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PREFACE TO THE SECOND EDITION

In issuing a second edition of the present volume it lias

been found desirable to ^enlarge it considerably beyond its

original limits. The
#
ne<jessity for this has arisen partly

from the increased requirements of the class of students for

<whom the book was originally written, and partly *from the

expressed opinion of many teacher.* that its sphere of useful-

ness might be thereby extended.

Chapters have been added on Maxima and Minima of

Several Independent Variables, on Elimination, on Lagrange’s
f

and Laplace’s Theorems, on Changing the Independent Vari-

able, and one giving a short account of the principal

properties of the best-known ^curves, which may be con-

venient for reference. A number of isolated theoAms and

processes, which do iv)t find a convenient place elsewhere,

have been put into a separate chapter entitled Miscel-

laneous Theorems. Considerable additions have been made
to some of the* original artiefes, and others have been

rewritten. • - .
• *

Many additional sets of o#sy examples, specially illus-

trative of the theorems and methods proved or explained

in the immediately preceding bookwork, have been inserted,

in the hope that a selection from these will firmly fix in

the mind of the student the leading principles and pro-

cesses to bd adopted in their, solution before attacking the

generally more difficult problems at the ends qf the chapters.

Ih a text-book of this character there will* not bd found
• %

much that is new or
t
original, the object being to present

to the student as succinct an account a.% possible of the
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most important results and methods which are up to the

'present time known, and to afford sufficient scope for

practice in their use. -

To attain this object many treatises on this and allied

subjects have been consulted, and my acknowledgments of
1

assistance are therefore due to many authors. More par-

ticularly I am indebted for much information to the

admirable works of Cramer, Gregory, De Morgan, l’Abbt'

Moigno, Serret, Frcnet, Bertrand, Frost, Todhurjter, William-

son, and Salmon, whose labours havo done so much to

deyelope and extend the principles and applications of the

subject.

1 have consulted a large number of university and

college examination papers set in Oxford, Cambridge,

London, and elsewhere, and' many of the examples given

have been extracted from them. Such papers clearly defintf

the extent of knowledge expected from students by the

large body of distinguished scholars^ who from time to

time are
t

engaged in conducting these examinations, and

+he present work has been constructed to meet these

requirements as far as possible.

My thanks are due to several friends and correspondents

who have kindly sent me valuable suggestions and lists of

errata occurring in the first edition.

JOSEPH EDWARDS.

80 Cambridge Gardens,

, Ifortu Kensington, W.
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PRINCIPLES AND PROCESSES OF THE
DIFFERENTIAL CALCULUS.





CHAPTER I.

DEFINITIONS. ilMITS.

1. Primary Objqpt of the Differential Calculus.

When increasing or decreasing quantities are made the

subject of mathematicaf investigation, it frequently becomes

necessary to estimate their ratdb of growth. The •primary

abject of the Differential Calculus is to describe an instrument

for the measurement of such rates find to*frame rules for its

formation and use.
• • •

2. The whole machinery of the Differential Caloulus will

be completed in the first six chapters, and the student should 1

make himself as proficient as possible in its manipulation.

The remaining chapters simply consist of various applications

of t^e methods and formulae here established.

3. We commence with an explanation of several technical

terms which are of frequent occurrence in this subject, and

with the meanings of which the student should be familiar

from the outset • •

4. Constants and? Variables. • 9

A constant is a quantity which
, during any set of mathe-

matical operations, retains the s eine value.

*

A variable is a quantity which, during any set of mathe-

matical operations, does not retain the same value, hut is

capable ofassuming different values.

•
1

#
Ex. The area of any triangle ore a given base and between given

parallels is a constant quantity ; qp also •the base, the distance between

the parallel lines, the Bum
.

of the 'angles of the triangle are constant

quantities. But the aeparate^angles, the sides, the#position of the vertex

are variables.

E.D.C. A
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It has become conventional to make use of the letters

a,*b, c, ..., a,
jS, y, ..., from the beginning of the alphabet to

denote constants
;
and to retain later letters, such as u, v, w, x,

y, Zy and the Greek letters £ q, £ for variables.
•

5. Dependent and Independent Variables.

An independent variable is one which may take up any
arbitrary value that may be assigned to it

A dependent variable is one which assumes its value in

consequence of some secortd variable or system of valuables

taking up any set of arbitrary values that may be assigned to

them.
c

c

6. Functions. r
«

Whep, one quantity depends upon*another or upon a system

of others, sp that it assumes a definite value when a system of

definite values is given to the others, it is called a function of

those others.

The function itself is a <dependent variable, and the variables

to which values ar.e given are independent variables.
c The usual notation to express that one variable y is a func-

tion of another x is

y=f(x), or y=F(x), or y= <j>{x)

;

the lettem /( ), F( ), tj>( ), ^( ), ... being generally retained cto

represent functions of arbitrary or unknown form. Occasion-

ally the brackets are dispensed with when no confusion can

thereby arise. Thus fx will sometimes be written for fix).

If u be an arbitrary or unknbwn function of•several variables

xt y, zr we may express the fact by the equation

w=fix, y> 4
lEx. In any triangle, two of whose, sides are x and y and the

included angle 0, we have A= £#ysind 'to express the area.

Here A is the dependent variable, and is a function of known
form—of x, y, and 0, which are

#
the independent variables.

7.

It will be seen that we could write the same equation in

other forms, *

e.g., sin0=*
2A
xy

which inay be regarded as ai\ expression for sin# in terms of
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the area and two sides
;
so that now sin 6 may be regarded as

the dependent variable, while A, x, y, are independent variables.

And it is dear that if there be one equation between four

variables, as above, it is sufficient to determine one iif terms of

thfe other three, so that any one variable may be regarded as

dependent and the others as independent.

This may be extended. Foj, if there be one equation between

n variables, it will suffice to find one of them in terms of the

remaining (n*- 1), so that any one variable can be considered^

dependent and the regaining {n— l) independent

And, further, if there be ^equations cqpnecting n variables

(n being greater than r) they will be enough to determine r of

the variables in terms of the other n—r variables, so that any
r of the variables can be considered dependent, while tjie re-

maining (n—r) are independent
•

•

8. Explicit and Implicit Functions* .

A function is said to be explicit when expressed directly

in terms of the independent variable or variables.

For example, if 2=#®, or strain#, or z~x*y,

or z= av€? log'x+(*+x)
n

:

z ib expressed directly in terms of the independent variables, and is there*

fore in each of the above cases said Jo be an explicit function of those

variables.
• t

But, if the function be not expressed directly in terms of the

independent variable (or variables) the function is sand to be

implicit. . ,

If, for example, * ar?+yx— b=0 ;

or
# ^^(^-fXb+yf;

y in each case is said to be an impli nt function of x.

Sometimes, however, we can sol'** the equation for y : e.g.
t
the firjt

b — ax*
equation we can write as*y=

,
and in this form y is said to be an

x
explicit function of

It appears then that if the equation connecting the variables be solved

for the dependent variable, that variable is reduced from being an implicit

to being an explicit function of the remaining variable or variables.

Such solution is not, however, always possible or convenient.

9 * Species of Known Functions. *

Functions which are bade up of powefs of variables and

constants connected by the signg *+ — x -s-* are classed as
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algebraic functions. If radical signs or fractional indices

occur in the function, it is said to be irrational ; ifnot, rational.

All other functions are classed as tmmcendmtal functions.

Of transcendental functions, sines, cosines, tangents, etc., are

called trigonometrical or circular functions.

Functions such as sin” 1
#, tan’ 1

#, etc., are called inverse

trigonometrical functions.
%

Functions such as e* a*
8

, in which the variable occurs in the

index, are called exponential functions.

While if logarithms are involved, as fof instance in log*# or

log
10(a+6#), etc., the function is called logarithmic.

Besides the ^bove we have the hyperbolic functions, sinh #,

cosh #, etc., of which a short ebscriptibn*follows in Art. 23.

10. Limit of a Function.

Def. When <a function can be made to approach continu-
f

ally to equality withsome fixed value so as to differfrom it by

less than any assignable quantity,
however small

,
by making

the independent variable (or variables) approach some assigned

yalue (or Values),* that fixed value is called the limit of the

function for the value (or values) of the variable (or variables)

referred to.

11. Illustrations.

Ex 1. B an equilateral polygon be inscribed in any closed curve, sfhd

the sides of the polygon be decreased indefinitely and at the same time

increased in number indefinitely, the polygon continually approximates

to the form of the
1

curve, and ultimately differsfrom it in area by less than

any assignable magnitude
,
and the purve is said to be the limit of the poly-

gon inscribed in it.

Ex. 2. The limit of ---- - when x is indefinitely diminished is 3. For
x+ 1

the- difference between -—~ and 3 is ; and by diminishing x inde-
.*4-1 .r + l

finitely —— can be made less than any assignable quantity however small.
x + 1

•

fly
] q

•

Hence it is said that the limit of when x is indefinitely diminished

is 3.
2+

3

The expression can also be written— which shows that if a? be

t . +x 0

increased indefinitely it,can be made to continually approach and to differ

by less than any assignable quantity from 2, which is therefore its limit in

that case.
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Ex. 3. The limits ofsome quantities are zero
,,
e g ,

asfi+bx, 1

sin x
,
{-when x is zero,

1 - efts xtJ

l-*mx, whenx=
|

When the limit of a quantity is zero for any value or values of the inde-

pendent variable or variables, ^he quantity is said to be a vanishing

quantity for those values.

It is useful to adqpt the notaJbioneZ^=a to denote the words
“ the limit when x=a of ”

Ex 4 The sum^of a G P of which the first term is a,
common ratio r

f

-n _1
and n the number of terms, is a— ,

• r — 1

If r< 1, the sum to infinity is * For the difference u ; and
1 — r r- 1

nTn •
since Ltn„« -~= 0 (when r < I), this difference is a vanishing quantity.

r — 1 •

Ex 5 We say 6= 3, hy which we mean that by taking enough sixes

we can make 666 differ by an little as we please from §

Ex 6 The definition of a tangent is another example. #
Def. Let PQ be a chord joining P

, Q, two adjacent points

on a carve. Let Q travel along the curve towards P and come

so close as ultimately to coincide with P. Then the limiting

position of PQ, viz. PT, is called the tangent at P #

.The angle QPT is a vanishing quantity , for it can be made

less than any assignable quantity by making Q move along the

cm ve sufficiently close to P. •
#

12. We proceed to state^ several important principles with

regard to limits which are of frequent use :— • •

(1) The limit of the*atom of a finite number of quantities is

equal to the sum of their limits^ •



6 CHAPTER I.

(2) The limit of the product of a finite number of quantities

is in general equal to the product of their limits

.

(S) The limit of the ratio of tw<* quantities (whose limits

are not zero or infinite) is equal to the ratio of their limits.

(4) The limits of two quantities (whose limits are finite)

are equal when the limit of their difference is zero.

These statements are almost self-evident, and their foimal proofs may
be loft as an elementary exercise for the student.

Examples.

1. If « lf u2, ... be the failing quantities* prove

Lt{u\ + u2+ u2 4* • • •) — L Ltu2+ . . .

.

[Let Vx, v2 ... be the respective limits of etc., and let Ui= Vi + av
u2—v2+ a2,

etc., where av a2y ... become lesff tlian any assignable quantities

when tfie Variables ul9 u2i ... approach their limits.

Then * ®Wi+ Wa+ ... =(vi+ ...)+(uj H-ajV ...),

and if a be rhe greatest*of the Quantities ah a2 ... and n their number,

cii+ no..

But by hypothesis Lta==Q
;

and therefore* if n be finite Ltno— 0,

whence * # Lt(ui+ +...) = v2+ v2+
% = /#£w

1+ Lt,u2 -\‘

2. Prove LtU\U2— LtU\ . Ltu2

and Lt(itiv2 ... it,) - LtU\ . Ltu« . Ltu$
;

pointing out any exceptions •

3. Prov# Lt
u^tUl

; I tun=(Ltu)n ; Ltau ~aLtu
; Li log u—log Ltu ;

Wj Ltu2

pointing out any exceptions. •

13. Indeterminate or Illusory Forms.
#

When a function involves the independent variable (or

variables) in such a manner that, for a certain assigned value

of that variable, its value cannot be found by simply substitute

irttj that value of the variable, the function is usually said to

take an indeterminate form or to assume "an indeterminate

value.
|

l4r.The name indeterminate^ though sanctioned by common
usp*, is open to objection, inasmuch as it will be found that the

trhe values of <such forms •can ip general be arrived at by

means of certain processes which ye shall hereafter discusd at

length in a special chapter ;
whereas* it would seem to be

implied in th^name indeterminate that it Vrould be impossible
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to obtain the value of a function to which that name was

applied. “ Undetermined” or “Illusory Forms” appear to be

better designations for such cases.

, 15 One of the commonest cases occurring is when the

function takes the form of a fraction whose Numerator and

Denominator both varnish for the assigned value of the variable.

The limit of the ratio of two vanishing quantities may be

zero, Jinite or infinite.

Several other indeterminate farmsrnre treated fully in Chapter

XIII
•

16 Two functions of the same independent variable are said

to be ultimately ega,aJ*when, as the independent variable

appioaches indefinitely near its assigned value, the limit of

their ratio is unity

• Thus *
Lte-r =1

,

o • •

and therefore when an angle ib indefinitely diminished, its Sine and its

circular measure are ultimately equal •

Examples

1 Find the limit when i-O of

(l) When

* (n) When

s/(m )
When y-axr+b

2 Fiud

y=tn^

3. Find

4 Find

Find*

6* Find

7. Find

8. Find

9. Find

Lt
l +£? (i

)
when x=0, (a )

when £= oo

• 2+ < ;

when y
2= 2ax-x

^

Ltx=&j when ~

Lt*-S +̂—

•

x

when
x

it, •
x-a %

when (i ) $«0 ;
(ii.)

10.

Prove that p-qx and q-px tend to equality as x diminishes to

zero, but yet that their limits are not equal
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11. The opposite angles of a quadrilateral inscribed in a circle are

together equal to two right angles. What does this become when in the

limit two angular points coincide i

12. Find the ultimate position of the piint of intersection of the dia-

gonals of a rhombus, when one of the angles diminishes indefinitely.

17. We now proceed to consider the limits of four very

important undetermined forms.

18. I. The proofs of the well-known results

Ltg Ocos3 = 1

,

r , tan 9 , *
Lte-»-~

e
- =1.

can be found in any standard book*on Plane Trigonometry.
'

19. II..
T, Xn-l

Let a?=l +z. Then when x approaches the value unity

z approaches zero, and we can therefore consider z to be less

than 1, and therefore can apply the Binomial Theorem to

"expand (1 +z)nf
whatever n ma^y be.

Hence uj^} -ItJ1-*?--}
X 1

^ V

„ ' n(n-l) 2 ,

.

“+——-+•••

w

t 20. III. = e, where e is the base of the Napier-

ian system of logarithms. This number e is defined as the

11 o

value of the series l+ l + .>
~

f
+g-r

+.«* to oc
, and it may easily

be shown to be 2*7182818— 0 o

Since a? is to be ultimately infinite, we may throughout

1
° o

consider to he less than unity, and may therefore apply* the

Binomial Theorem to expansion of • We thus
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i.l • /, ,
1\* , ,

1
,

-c(a3— 1) 1
,
*(i»-l)(x-2) 1 ,

obtain (1+-) =l+*-+-Vr ' -

172.3 »+- .

=1+l+ TT+
V-l (i-!Yi-*)

a; .
V x/\ x)

TT +...

• 1+ 1+fi+|l+—
in the limit, when x is indefinitely increased.

Cob.
{(
l+3T=eB-

21. IV. Vx=o——- =logea.

Assume the expansion fiprV, viz.

:

• • •

This is a convergent series, for the test, fraction is
x logea

and can be made less than any assignable quantity by making

n sufficiently large.

We have therefore

a*-l , *a;(locr
e(/)

2

- — + -
and the limit of the right-band side, when x is indefinitely

dirifinished, is clearly loged. •

22. The limit IV. can be deduced from III. thus

:

Let

then

V

a*~l
if

and therefore when £ becomes zero y becomes infinite, and

it'-f-Z'-Lt, --LM1+
l)

= Lt,~* \ prj

y ]°z?( l+J MJ+
y)

i i
* ' *

.[Art. ao].
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1. Prove

2. Prove

Examples.

[Put x= 1 +y.]

3. Prove

4. Prove

5. Prove

6. Prove Ltx=,

Ltx^\+ax)x =<*1
.

Zft^p
8—wr * m

^sinm n

without assufuing the Binomial theorem ; con-

sidering the several cases, (i.) n a positive integer, (ii.} n a positive fraction,

(iii.) n negative, (iv.) n incommensurable. *

23* Hyperbolic Functions.

By analogy with the exponential values of the sine, cosind,

tangent, etc., the exponential functions

« t 2
*
~

2 * W+F* 9
etC* >

^ are respectively written

sinh 0, cosh 0, tanh 0, etc.,

and called the hyperbolic sine
,
cosine, tangent, etc., of 0, and as

a class spre styled hyperbolic functions.

a- • * a e^+e’^
Since sin 0=— , and cos 0 == ^—

,

where i = s/—*1, it will be clear that

sin i0= l sinh 0,

t
(

cos £0= cosh 0,

and hence or from the definition

/i \ x n sinh 0 i />

.

(1) tan£0=

(2) cosh

2

0— sinh20= 1

;

(3) sin (0+ (0) = sin 0 cosh
<f
>+

1

cos 0 sinh <p ;

with many other formulae analogous to, and easily deducible

from, the common formulae of Trigonometry.

If ^ / sc= sinh 0,

wehavb 0=sinhr 1
#,

an inverse hyperbolic function of x hnalogous to the inverse

trigonometrical function sin; 1#.
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This species of function however is merely logarithmic; for,

. ep— Q-o
since x=—g—

,

we have ee =x+s/l+x2
,

and 0 = logt(#

+

s/1 +x2
),

while corresponding results hold for cosh" 1
#, tanh" 1

#, etc.

Examples.

1 . Provo the following formulae— •

() cosech J0= eot^r# - 1

;

()
Hinh (0 + <f>y= sinh 0 cosh <f> + cosfl 0 sinh ;

«
(d) sinh 0+ sinh <£— 2 sinh cosh^2 2

^

6. Show that the co-ordinates of any point on the rectangSlar hyperbola

.c
2-y3=u 3 may be denoted by a cosh 0 a sinh 0.

•

3.

Provo (a) 8inl»
_,j7=tanh''1

(b) 2 tanh lr= 1og J
.1

4. If x+ iy— a tan(a -f tv), show that the curves ?i= constant and v= con-

stant are tiicles whose radii are respectively a cosec 2u and acosech2/;

cutting each other orthogonally. •

5. fcfliow that sinh x and cosh x have an imaginary period 2wr, Aid that

tanh x has an imaginary period 17r.

Infinitesimals.

24. All measurable quantities are estimated by the ratios

which they bear to* certain fixed hut arbitrary units of
#
t!ieir

own kind. The whole measure of a quantity thus consists of

two factors—tho unit ijbaelf and pi abstract number which re-
#

presents the ratio pf the measured quantity to the unit. The

magnitude of the unit should be chosen as something com-

parable with the quantity to fie measured, otherwise the

abstract number which measures tho ratio bf the quantity

to the unit will be too large or tocf small to lte within th^

limits* of comprehension. For instance, the radius of th^ earth

is conveniently estimated hi miles (roughly 4,000) ;
the moon’s

distance in ewrth’s mdvi (about 60)*; the feifn’s distance in
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moon*8 distances (about 400) ;
the distance of Sirius in sun's

distances (at least 200,000). Again, for such relatively small

quantities as the wave-length of a, particular kind of light, one

ten-millionth of an inch is found to be a sufficiently large

unit: the wave-length for light from the red end of the

spectrum being about 266, that from the violet end 167 such

units (Lloyd, "Wave Theory of Light,” p. 18).

25. Any Comparison of two quantities is equivalent to an

estimate of how many \imes the one is contained in or contains

the other
;
that is, the one quantity is estimated in terms of

the other as a uriit, and according 4 as the number expressing

their ratio is very large compare^ with unity or a very small

fraction, the one is said to be
t

vety large or very small in

comparison with the other. The terms great and small are

therefore purely relative . %

The standard , of smallness is vague and arbitrary. An
error of measurement which, centuries ago, would have been

reckoned small would now be considered enormous. The
accuracy of observation, and therefore the smallness of allow-

able errors of observation, 'increases with the continual im-

provement in the construction of instruments and methods

of measurement.

26.
1

Orders of Smallness.

If we conceive any magnitude A divided up into any large

<

number of equal parts, say a billion (1012),cthen each part ^12

is extremely small, and for all practical purposes negligible, in

comparison with A. If this part be agdin subdivided into a

A
billion equal parts, each= each of these last is extremely

A'
small in comparison with and so on.* We thus obtain a

AAA
series of magnitudes, A , ..., each of which is

excessively small in coiftparispn with the one which precedes

it, but very large compared ^ith the one which follows it.

This furnishes tts with what we* may designate a scale of

smallness.

"
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More generally, if we agree to consider any given fraction /
as being small in comparison with unity, then fA will be

small in comparison with A ,
and we may term the expressions

fA, f*A, pA, .. srhall quantities of the first, second, thirc[, etc

,

orders ; and the numerical quantities f,f\P, ..., may be called

small fractions of the first, second, third, eta, orders.

Thus, supposing A to be any given finite magnitude, any

given fraction of A is at our choice to designate a small

quantity of the first order in comparison with A. When this

is chosen, any quantity which has to*this
#
small quantity of the

first order a ratio which is a small fraction of the first order, is

itself a small quantity of the second order. Similarly, any

quantity whose ratio to a smalt quantity of the second order is a

small fraction of the first order«is a small quantity of the third

order, and so on. So that generally, if a small quantity b^suCh

that* its ratio to a small quantity of the pth order be a
#
small

fraction of the 5
th order, it is itself termed a small quantity of

# the (p+ 3)
th order.

27. Infinitesimals. • •

If these small quantities Af, Afi
2
,
Ap, ..., be all quantities

whose limits are zero, then supposing / made smaller than any

assignable quantity by sufficiently increasing its denominator,

these slhall quantities of the first, second, third, etc , ordejg are

termed infinitesimals of the first, second, third, etc., orders.

From the nature of an infinitesimal it is clear that, if any

equation contain finite quantities and infinitesimals, the in-

finitesimals may be rejected.

28. Prop. In any equation between infinitesimals of differ-

ent orders, none but those of the lowest order need be retained.

Suppose, for instance the equation to be

(l)

each letter denoting an infinitesimal of the order indicated by

the suffix. 9 ,

Then, dividing by Av •
*

1+f1+2 +2
i+

2
i+
3
1+ ' =0;

the limiting ratios ^ and ^ are finite, while
*V A-

are m-
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finifcesimals of the first order, -j
3

is an infinitesimal of the
*^1

second order, and so on. Hence, by Art. 27, equation (ii.) may
be replaced by

1+?-+? =0>A
x

A
1

and therefore equation (i.) by

-Ai+-Bi+Gl
:=0,

which proves the statement.

29. Prop. In any equation connecti/ng infinitesimals we
may substitute /or any one of the quantities involved any
other which differs from it by a quantity of higher order.

For if A
1
+B

1J-C1
JpD

2+ ... = 0

be the*equation, and if ^*=^
1+fv

f2 denoting an infinitesimal of higher order than Fv we have

+B
X+ +A+ J5

2+ . . . = 0,

i.e., by the last proposition we may write

F
1+£1 + C1= 0,

which may therefore, if desirable, replace the equation

A
l
j-B

1
+C

1= 0.

30s Illustrations.

era cos0=l— 5-j+^-j— ..s

sin*&, 1— cos 6, 6—sin 9 are respectively of the first, second, and

third orders of small quantities, when 6 is of the first order

;

* also, 1 may be written instead of cos 6 if second order quantities

.are to be rejected, and 6 for sin 6 when* cubes and higher

powers are rejected.

31. Again, suppose AP t^e arc of a circle at centre 0 and

radius a. Suppose the angle 4OP (= 0) to be a small quantity

of the first ‘order Let PiV bethe perpendicular from P upon

0A and AQ the', tangent at A, meeting OP produced in Q.

Join P,A. t •
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Then arc AP=a6 and is of the first order,

NP= = asin0 do. do..

AQ* <x>

'

1ii do. do,

0
chord AP =*= 2a sin

|
do do.,

NA = a(l — cos 6) and is of the second order.

So that OP— ON is a small quantity of the second order

Big. 2

. e
Again, arc AP— chord AP~a6—2a sin

^

V-

)

ad*
,= 4:57

-etc ,

• and is of tho third order.

PQ—NA =NA(sec 0— 1)

=NA
„ ft2 sm2

g

and similarly for others

COS0

= (second order) (second (Jrder)

= fourth order of small quantities,

32. Such results may also be established without the use of

the series for sin 0 and cos 0

For example, lot APB be a semicircle, P any poirft very near to A, so

that the arc AP may be considered a small quantity <Jf the first order.
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Join AP, BP, and let BP produced cut the tangent
c

at A in R, and let the

tangent at P cut AR in T, and draw the perpendicular PN upon AB. T
will be the middle point of AR, and AT— TR— TP.

(1) We may take it as axiomatic that the length of the arc AP is inter-

mediate 'between the chord AP and the sum of the tangents AT, TP; i.e.,

between chord AP and tangent AR. Hence chord AP, arc AP, tangent

arc APAR are in ascending order of magnitude, and therefore 1, ,—-= „
chord AP

tangent AP
are *n agcencjing order of magnitude,

chord AP

Now, // AR j^PA
1

chord AP BP

whmce t *
AP __ i

afisa ap~ 9
7

and therefore, if arc AP be reckoned a 8m** 11 quantity of the first order,

the chord AP and the tangent AR are also of the first order of smallness.

AN AP
(2) Again, since = —

,

and since AP is of the first order of smallness,
AP AB

AN is of the second order.
a

PN BP
(3) Also =

~BN *
s u^^mate^ a raf;i° °f equality, and therefore

PR is alSo of the ‘second order.

(4) Similarly, since AR- AP=^ anc* 8*nce is

a small quantity of the fourth order, and AR+AP is a small quantity of

the first order, we see that AR-AP is of the third order of small

quantities.

And similarly for other quantities the order of smallness may be

geometrically investigated.

33. The hose angles of a triangle beirig given to be small

quantities of the first order
,
to find the order of the difference

between the base and the sum of the aides .

«Fig. 4.

By what <has gone before, ^Art. 31) if APB be the triangle

andPM the perpendicular on AB, AP—AM and BP—BM are

both small quantities of the second order as compared with
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Hence AP+P&+-AB is of the second order compared with

AB.
If AB itself be of the first order of small quantities, then

AP+PB—AB is of the third order. •

34. Degree of approximation in taking a small chord for a
small arc in any curve .

• B

Fig. 5.

Let AB be an arc of a curve supposed continuous between

A and B, and so small as toJbe concave at each point through-

out its length to the foot Of the perpendicular from that point

upon the chord. Let AP,&P be* the tangents at Atemi B.

Then, when A and 2? .are taken sufficiently near together, the

chord AB and the angles at A and B may e&ch be considered

small quantities of at least the first order, and therefore, by

what has gone before, 'AP+PB—AB will be at least of the

third order. Now we may take as an axiom *that tlfe length

of the arc AB is intei%mediate between the length of the chord

AB and the sum of the tangents AP, BP. Hence the differ-

ence of the arc AB and the chord which is less than that

between AP+PB and the chord AB, must be at least of the

third order.

EXAMPLES.

1. Show that, in tfie figure of Art. 31, the area of the segment

bounded by the chord AP and the arc AP is of the third orddr of

small quantities.

2. In the same figure, ifPM be dit»« n perpendicular to AQ, show®

that the triangle PMQ is Of*the fifth order of smallness.

3. A* straight line'of constant length slides between two straight

lines at right angles, viz., CAa, CbB
; AB and ab are two positions

of the line and ittheir point of intersection. Show that, in the limit,

when the two positions coincide, we have

Aa CB i iPA CB*

m =CA™d
JB‘'-CA*

4. From a point T in a radius OA of a circle, produced, a tangent

TP is drawn to the circle, touching it
#
itf P; PJVIs drawn perpen-

E.D.O. b •
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dicular to the radius OA. Show that, in the'limit, when P moves

up to A , NA=AT.
5. Tangents are drawn to a circular arc at its middle point and at

its extremities. Show that the area of the triangle formed by the

chord of the arc and the two tangents at the extremities is ultimately

four times that of the triangle formed by the three tangents.

[Frost’s Newton.]

6. If, in the equation sin(oj - 0)
#
= sin c*> cos a, 6 be very small, show

that its approximate value is
c

2 tan to sirt^l ~ tan2w sin2®^. [L C. S.]

7. If G be the centre of gravity of the arc PQ of any uniform

curve, and if PT be the tangent at P, prove* that, when PQ is in-

definitely diminished, the angles (r/Ptand QPT vanish in the ratio

of ? to, 3. ,

4
[I. C.S.]

8. If*a sijie of a regular polygon be a sipall quantity of the first

order in comparison with ,tlio radius of its inscribed circle, prove that

the difference between the perimeter of the polygon and the circum-

ference of the circle is a small quantity of the second order.

. .
[I. C. S.]

9. Assuming the radius of the earth to be 4000 miles show that

the difference between its circumference and the perimeter of a reg- •

ular inscribed polygon of ten thousand sides is less than a yard.

10. j3how that the curved surface of any belt of a sphere contained

between parallel planes is equal to the surface of the corresponding

belt of the circumscribing cylinder whose axis is perpendicular to the

planes.

11. The sides of a triangle are 5 and 6 feet, and the included

angle exceeds 60° by 10". Calculating the third side for an angle of

60° find the correction to be applied for the extra 10".

12. If a triangle be inscribed in a given circle prove that the
* algebraic sum of the small variations of its sides, each divided by the

cosine of the angle opposite to it, is equal to zero. [Math. Tripos.]

13. If x, y,
z be the diagonals and the join of their mid-points in

a quadrilateral whose sides aje given, and £, tj,
£ their respective

increments whett the quadrilateral receives a slight deformation,

then will • + yrj d- 4 = 0.

Ata> if the quadrilateral be a parallelogram
*

’ * + 0,

and if cyclic
* 0

c y£+aty«0.
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14. A person at a distance q from a tower of height p, observes

that a flagpole upon the top of it subtends an angle 0 at his eye.

Neglecting his height show that if the observed angle be subject to

a small error a, the corresponding error in the length of the pole has

to the calculated length the ratio

qa cosec 0/(q cos 0 ~p sin 0).

15. Prove that

tan“
ltan ^ + tanh 2

<f> ^ <
.

ftn
.1
tan 6 - tanh

* tan 20 - tanh 2<£ tan 0 + tanh <j>

• =tan“1(cot 0 coth <£).* [Math. Tripos, 1878.]

16. If or + iy = c cos(£ + nj), the cuives tj = constant and £ - constant

are confocal ellipses and ]typerbolab respectively,*

Prove that the square of the distance between tho points (£, rj)
9

(£', 7}) is the same as the
#
square of the distance between the

coiresponding points (£', rj), (£, 7$, viz.,

r2 {cosh(iy + ?;') - cos(£ + £)}{co&&(rj - 7/) - cos(£ - £')}.
* *

Prove also that a bisdbtor of the angle between thefe distances

makes with the rr-axis an angle tan

~

1
.

[Loisdon, 1887.]
tanh£(iy + 1/)

17. If cos < cosh^=l, / is called the Gudermannian of u and

written gd u. [Cayley, Elliptic Functions.]

Prove (a) gd u = tan”1sinh u = sin" 1tanh u.

(b) £ gd u = tan-1tanh

(c) u= log tan^+ £gd u^.

(d)dngd(u + v).jiBJilpiM^.0
1 + singdwsingdt>

1 8. Prove that 1 gd^| gd itj = n,

gd u= OjU + e
3
w3 + of

6
w6 + .

gd
~ lu = ^14 - a

3
rs + a

6
t4
5 -

.

and show that if

then will

19. If /(») =
j l x

> Prove ffftv)= as,

Also i£ /(r) = a + Jo*,* prove that

V.
20. If and

/(«) «=42{ 4^* cosh
2^ + {/r*cosh-gjj +

prove that ./(a + 2a)

fiirx • iM •

+ ...ad mf.J,w
[Oxford.]



CHAPTER II.

t

FUNDAMENTAL PROPOSITIONS.
o

<

35. Direction of the Tangent o£a Curve at a given point.

LetAB be an arc of a curve traced in the plane of the paper,

OX a fixed straight line in the same plane. Let P, Q, be two

points on the curve
;
PM, QN, perpendiculars on OX, and PR

the perpendicular from P on QX. Join P, Q, and let QP be

produced to cut OX at T.

'When Q, travelling along the curve, approaches indefinitely

hear to P, the chord QP becomes in the limit the tangent at P.

QR and PR both ultimately vanish but the limit of their ratio

is in general finite ; for Lt^^^Lt tan RPQ^Lti&nXTP

= tangent of the angle which the tangent at P to the curve

malce8 with GX. *

‘ c

t I o

]gx. 1. (Consider the straight line whose equation is g**nw+c*

Let OX
9 07

\

he <the axes, and le*t th§ co-ordinates of P be Then,

taking the gqperal construction of the preceding article, the intercept

OA =c, forymc when #=0*.
• 1 20
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Let the co-ordinates of the points P, Q, on the curve he

(as, y) (as+Sx, y+Sy) respectively, Sx and Sy being used to

denote increments of the variables x and y.

ftien, the construction being as before,

OM=x, ON=x+ Sx, therefore PR= MN=Sx-,
also, MP= y, NQ=y+Sy, therefore RQ— Sy.

Again, since the point x+Sx, y+Sy, lies on the curve,

< y+Sy=<f>(x+Sx),

whence RQ=Sy— <p(x+Sx)

—

Hence we can express Zi^^ as Lt^ or

Hence, to draw the tangent at any point (as, y) on the curve

y= <j>(x), we must draw a line through that point, making with

the axis of aj an angle whose tangent is Zfo^o^—

;

and if this limit be called m, the equation of the tangent at

f\xty) will be**
‘ ^ Y—y—m(X—x),

X, Ybeing the current co-ordinates of any point on the tan-

gent; for the line represented by this equation goes through

‘the point (as, y), and makes with theaxis of as an angle whose

tangent is m. , ,

Examples.

Find the equation of the tangent at the point (x, y) on each of the

following curves
• ‘ 1.

»

4, yxmlogx.

0. y—tan#.
6. y-tan-1#.
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37. Def.—Differential Coefficient.

Let <p(x) denote any function of x, and <f>(x+h) the same

function of x+h ; then Ltimffi—

^

is called the first

DERIVED FUNCTION OT DIFFERENTIAL COEFFICIENT of <f{x) with

respect to x.

The operation of finding this limit is called differenUatirCg

<f>(x) •

After reading Chap V., it will be obvious why the above

expression is styled a “ coefficient,

1

n

foF it is shown there to be

one of a series of coefficient^ occuning in the expansion of

<f>(x+h) in powers
#
of h. •

The geometrical meaning of the above limit is indicated in

the last article, where it iS shown to be the tangent of the angle

yfs which the tangent at any definite point (x, y) on the qgirve

y*= (f>(x) makes with the axis of x, ,
•

38 Wo can now find the differential coefficient of any pro-

posed function by investigating the value of the above tlinit

;

but it will be seen later on that, by means of .certain rules and

a knowledge of the differential coefficients of ceitam*standard

foims, wc can always avoid the labour of an ah initio evaluation.

When such an investigation becomes necessary, it may some-

times be conducted very simply by pure geometry It is how-

ever*usual to treat the moie complicated functions algebraically

Several examples are appended

^ Ex 1. To find geometrically the differential coefficient t>f sin a?

Let the angle AO*P—x, AOQ*=x+h, and let a circle with centre 0 and

radius unity cut the lines OA, OP, OQ
, m A, P, Draw perpendiculars

PM, QN, to OA, andP^to QM. .Join PQ. Then

MP~tin#, NQ**&\xi(x+h)f
4

sin (a?+A)- sin ?
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Again,

Hence

Lh

A=angle POQ**arc i*#, the radius being unity.

sin(#4-A)-sin# RQ RQ
‘° A

~~
arcPQ~ chord /*<2

* (for chord PQ and arc PQ are equal in the limit)

= Zfccos RQP—coa OPR
(since in the limit QPO is a right angle)

= cos AOP*f cos #.

In treating the trigonometrical functions by this method it is convenient

to always arrange that the denominator of the ratio considered shall be

unity.
* * •

S Ex. 2. To find geometrically the differential coefficient of sin” 1#.

In Fig. 10 let AOP= sin" 1
#,

%

and J$()=sin-1
(fc-|jA).

Then, with the same construction as before,

* * MP—x^ Ar$>=#+A,

therefore * RQ—h. *

Hence
fl RQ

Tf^OQ j
.chord PQ r . 1^1

RQ
&

RQ cos RQP "cos OPR1.1
cos A OP 1 - biiiMOP

1

• J\-ar

Examples.

Find in a similar mannei the differential coefficient! of

(1) tan#. (3)^cosec#.

(2) tan-1#. (4) cosec-1#.
#

Ex. 3. *Find from the definition the differential coefficient of where

a is a constant.

Here

<t>(x+h)'
(x+hy

Lt%.
ha

therefore
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The geometrical interpretation of this result is that, if a tangent be

drawn to the parabola ay—x* at the point (x, y), it will be inclined to the
O-

axis of x at the angle tan- 1—.
a

Ex. 4. Find from the definition the differential coefficient of Jog sin
• a

where a is a constant. t

Here </>(#)= log sm

. logsin—^-logsin^
and jAkJ^p±^=lth ^ «, 2

* X /i V • ft
, Sill COS +COS 8111-

li™, o « « a

wn

«rf,Zffc»o^log(l+^ cot ^-higher powers of ftj

j—
• ^ I ^ ^ f

j^by substituting for sm£ and cos^ their expansions in powers of
-J

-Lt,

1

cot - - fiiglier powers of ft

[by expanding the logarithm]

= 1 cot

Hence the tangent at any point on the cuive &= log sin 1 is inclined to

the a^is of x at an angle whose t mgent is cot 1 ; that is at an an^le
^ ^

39. Notation.

The result of the operation expressed by Lth *. y
——

^

or by Lt «_0^ is generally denoted by ^.y or

It will be well to note distinctly once for all that in the

notation thus introduced, dx and dy, as here used, are not

d
separate small quantities as Sx and Sy are, but that ^ is a

symbol of operation which, when applied to y, denotes the

result of taking the limit of the ratio of the small quantities

Sy, to.
j

Sometimes dxy is used to denote the same ’thing

;

J or, if

y—4>(x), we often meet with the forms $*»
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or <j>. Again, as the letters u9 v, w, etc., are ‘frequently used to

dfenote functions of x9
we shall consequently have the differ-

ed

6

ential coefficient variously expressed, as u', u9f or u9 with a

similar notation for those of v, w, etc. ,

40. Aspect of the Differential Coefficient as a Rate-Measurer.

When a particle is in motionfin a given manner the space

described is a function of the time of describing it. We may
consider the time as aifc independent variable, 'and the space

described in that time as the dependent'variable.

The rate of charge of position of the particle is called its

velocity.
%

If unifo7tm the velocity is measured by the space described

in one second; if variable^ the •velocity at any instant is

measure*} by the space which would be degcribed in one second

if, for that second, the velocity remained unchanged.

Suppose a space s to have been described in time t with

varying velocity, and an additional space Ss to be described in

the additional tijne St. Let v
x
and v

2
be the greatest and least

values of the velocity during the interval St ;
then the spaces

which would have been described with uniform velocities v
l9

v2> in time St are v
xSt and v

2
St

}
and are respectively greater and

less than the actual space Ss. •

Hence vv and v
2
are in descending order of magnitude.

ot

If then St Be diminished indefinitely, we Jiave in the limit

i;
1
=r2=the velocity at the instant considered, which is there-

fore represented by i.e., by

* 41. It appears therefore that we may give another interpre-

ts
tation to a differential coefficient, viz., that^ means the. rate

of increase of s in point of time. Similarly mean the

rates of change of x and y respectively in point of time and

measure the velocities, resolved parallel to the axes, of a moving

particle'whose co-ordinates at the instant under consideration

are x, y. Ifx andj/ tie given functions of t, and therefore the
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path of the.particle defined, and i{JxL$yfJtLhe simultaneous

infinitesimal increments of a?
T yr ^Jjign

dx

Sy dy

rJy r *
st dt

=Lt
te
=Lt

te
=
Jx

St dt

and therefore represents the r&tio of the rate of change ofy to

that of x The rate of change of * is arbitrary, and if we

choose it to be unit velocity, then ^ ^= absolute rate of

change of y. ,
% »

42 Meaning of Sign of Differential Coefficient.

If x be increasing wish
^

the ^-velocity is positive, whilst,

if x be decreasing while t increases, that velocity is negative.

Similarly for y •

Moreover, since

dy
dy dt

dt

^ is positive when x and y

increase or decrease together, but negative when one increases

as the other decreases.

This is obvious also from the geometrical interpretation of

^ S or, if x and p’° increasing together,
is the Hangent

of an acute angle and therefore positive,
while if, as x increases

y decreases, represents the tangent of an obtuse angle and

is negat jve.

Exampi^k

Find from the definition the differential coefficient of y with respect to

x m each of the following cases

:

, t
L y-a3

. _
2. y«2Vaa?.

z 3. y*
'

4. y« «*.

6. y= W*.
t

6. y= a-**,

7. y* a1***.

8. ys-tan-1^8.

9. y=»logfeos#.

10. y»logtanw.

y~a>* 1

12. y»^*
13. y«(sfntf)*.

, l4. y-»(sini)v^.
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15. In the curve y—ce^ if \p be the angle which the tangent at any

point makes with the axis of #, prove y=ctan \p.

16. In the curve y**c cosh -, prove y= c sec \p.

c
*

17. In the curve Wy— — ax2 find the points at which the tangedt is

3

parallel to the axis of x.

[N.B.—This requires that tan ^=0.]

18. Find at what points of the ellipse 1 the ^tangent cuts off

a
^

equal intercepts from the axes. * *

[N.I3.—This requires that tan '/'= ±1.]
c

19. Prove that if a particle move so that the spade described is propor-

tional to the square of the time of description, the velocity will be pro-

portional to the time, and the rate of increase of the velocity will be

constant. • <•

20. Show that if a particle move so that the spQce described is given by

8 oc sin jxtj where /a is a constant, the rate of increase of the velocity is

proportional to the distance of the particle measured along its path from

a fixed position.

43. It will often be convenient in proving standard results

to denote by a small letter theJunction of x considered, and by

the corresponding capital the same function of x+h
,

e.g.y
if

u=<j>(x), then U=<p(x+h), or if u—ax
t then U—ax+h

.

Accoijdingly we shall have

du T . U—u
dx- Lth=° IT9

dx= Lth
=°-JT'

.
etc.

44. We now proceed to the consideration of several im-

pprtant propositions.
•

45. Pbop. I. The Differential Coefficient of any Constant is zero.

This proposition will be obvious when we refer to the defini-

tion ofa constant quantity. A constant is essentially a quantity

of which there is^no variation so that if y—c, Sy= absolute

zero, ^hateve^ may bo the value of Sx. Hence and

^= 0 #hen the limit is taken. •

ax * * •

Or, geometrically; y—c is the equation of a straight line
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*

parallel to the axis of x. This makes an angle zero with that
' fly

axis, and therefore tani/c or ^=0.

46. Prop. II. Product of Constant and Fnnetion. *

The differential coefficient of a 'product of a constant and a
function of x is equal to the product of the constant and the

differential coefficient of the function, or, stated algebraically.

d

,

. du
3$

For, with the notation of Art. 43,

d . •
. r . cU—cu T .

^fCU)=Lth=
y

^ =CjOCa= o

* du
’ ~ C

dx‘

U-v
h

47. Prop. III. Differential Coefficient of a Sum.

The differential coefficient of the sum of a set offunctions

of x is the sum of the differential coefficients of the several

functions. • »

Let u, v, w, ..., be the functions of x, and y their sum.

Let U, V, W, .... Y be what these expressions severally

become when * is changed to x+Ji.

Then y=u+v+w+...

Y=U+V+W+...,
and therefore *

Y—\y= (U-u)+(V-v)+(W-w)+ ...

;

dividing by h,

Y—y_U—u, V—v
,
W—iv,

~h h
+
~h

and taking the limit •
*

; dy_du ,dv ,du>,

dx dxdx'dx'"
If some oT the connecting si£ns had beeiv — instead of + a

corresponding result would immediately follow^ e.g., if

y=u+v—w+...



so CHAPTER H.

48. Prop. IV. The Differential Coefficient *of the product of

two functions is

(First Function) x(Diff. Coeff. of Second)

+ (Second Function) x(D\ff. Coeff\ of First),

or, stated algebraically,

d(uv) dv
.
du

dx
~U

dx
V
dx

With the same notation as before, let

* y= uvy
and therefore F= UtT

;

whence Y~y= W—uv r

=u(V-i)+ V(U-u);

therefore —-7" =

u

+ V—7-^,
h

k h
«,
h

and taking the limit
#

9

r * dij dv *, du
4 f

, dx~~
U
dor

V
dx c

49. On division by wv Ihe above result may be writter

1 dy du^l dv

y dx u dx v dx

Hence it is clear that the rule may be extended to products of

more functions than two.

For example, if y=uvw

;

let vw=z
,
then y= uz.

Whence 1 d
]L--

r
y dx

du_^l dz

u dx z dx*

but
1 dz_l dv_^_ 1 (Vw

z dx v dx vf dx*

whence by substitution

1 dy (Luj^l dv^l dw
« y dx u dx v dx w dx~

Generally, if y = uvwt . .

.

1

I — i^+ 1 ^^1 dw^l dt

^

y dx u dx~ v dx~w dx~ t dx
'"*

and if we multiply by uvwt . . , we obtain

i.e., multiply the differential coefficient of each separate func-

tion by the product of all the remaining functions and add

up all the results; <the sum 'will be the differential coefficient

of the product of«all the functions.
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50. Prop. V. The Differential Coefficient of a quotient of two
functions is

(Biff. Ooeff. ofNumr.)(Benr.)— (Biff. Coeff. ofBenr)(Numr.)
Square of Denominator

or, stated algebraically,

du dv

d /u\ _dx
V

dag
1*

dx\vJ v*

With the sanje notation as before, let

» y—~, and therefore F= y,v
»

'

whence Y*—y= r̂
—~

* V v

_ Uv- Yu
VT~\

therefore

, U—u V—v
Y—y_ h h»

h Vv
and taking the limit

du dv

dy_ dx
V

dx
1

die v2
r—

51. This proposition may also be deduced immediately from Prop. IV.,

thus :

‘

§

Let

i.e
,

whence

and therefore

u^vy
;

das dx dx

u dv

dx
+

V dx ’

du u dv

dy dx v dv

dx“ t

Examples.

1. Deduce the result of Prop. II* from propositions I and IV.

2. Deduce from Prop. V. tha£

d fe\ c du
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3. Apply proposition IV. and the results of Art. 38 to show that
j
-jr/arkin ^)=^2coa 2# sin a?.

4 Apply proposition V. to show that

r d /sin x\ cos x . 2 sin 3?

dx\ x1
/

*

52. Prop. VI. To find the Differential Coefficient of a Func-

tion of a Function. *

Let u=f(v) (1)

and « v~F(x)
;

*
(2)

Then, by elimination of v,
we have a result which may 1>e

expressed as c u= <p(x) (3)

Suppose the independent variable x to change to X in (2)

and let a value of v deduced from (*2) be F Let this be sub-

stituted for v in (1), and let,a val&e of u deduced from (1) be U.

Then we have the following equations. e

. U=f(V) : (4)

and V=F(X) : (3)

and by the same process by which (3) was deduced from (1)

and (2) we obtain from (4) and (5)

U=r<f>(X) (6)

This result proves that if x be changed toX in equation (3),

then one of the values thepice deduced for u will be U, and

therefore when X—x is diminished indefinitely is a

value of the differential coefficient of u with respect to x,

reckoned as 'a direct function of x as expressed in equation (3).

XT
J

U~u U—u F— vNow . —^ ^

—

X~x F— v X—x
and - is a value of the differential coefficient of uF—

v

iwith respect to v derived from equation (1) and denoted by

: also, Ltx-x=<ri-
V

is a value of the differential coefficient
cLv a — x *

of V with respect to x derived from equation (2) and denoted

by We therefore have, jvhen we pi'oceed t5 the limit,

* 'du_du dv

\ dx dv dz'

a formula already established in a ’different manner and with

different letter* in Art. 41.
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53. It is obvious that the above result may be extended.

For, if u=<p(o), v=\ff(iv), w=f{x), we have

du_du dv

dx dv dx
1 •

dv_dv dw
dx dw dx*

du_>du dto dw
dx dv dw dx*

but

and therefore

and a similar result hqlds however mlny functions there may
i

be.

1 *2
*

Ex. Let w—6smv,, v= -sin“1w, that is,

a a

u—l\sm f

1 sm- 1^
\a, at

Then, by Ex. 1, Art. 38, ~= 6 cos v
* dv

Ex. 2, ibid.

Ex. 3, ibid.

Hence

dv 1 1

dw a J\-ur

dw
dx~ a

du Jut. *1. *f=6cosv
dx dv dw dx

b (1
= COsl-SlA
a \a at

1 1 2x

a ' dl - w* ' «

1 2#

The rule may be expressed thus:

d(lst Func.) __ d(lst Func.) d(&nd Fane.) d(Last Func.)

dx d(2nd Func.) d(3rd Func.)’” . dx

or if u=<p[y}r{F{fx))), »

'

^=tW{F(fx)}] x V{F(fx) } x F<Jx) xfx. ,

%

54. JTiere is a difficulty m Prop. VI. arising from the fact that for one

value of x in (2) there may be several values o/v
f
and for any value of v in

(1) there ma) bj several values of u. fact the/(v) and F{v) may one or

both be many-valued functions (such, f®r example, as shi" 1
#, which denotes

any one of the series of angles whose sines are equal to x)t But it is clear

that the same values of u and x will satisfy equation (3) hs would*simul-
h • U—

u

*
taneously satisfy (1) and (2), and that Lt-~— when X-x is indefinitely

Ji —x
diminished is one value of the differentia coefficient at u considered as a

E.D.C. • c »
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function of x ; and it is equally obvious that there may be a series of such

values for as also- for^ and for so that in the theorem enunciated
ax do dx

and proved above, in Art. 52, a proper selection of those values is assumed

to be mods.

55. If in %the theorem ^ ^ ^ (where y is written, for v

in the result of Art. 52) we suppose u—x, then

du dx T (x+h)—x - t

dx~~dx~^
A=0

h
~~

Hence we have =1,
dx cty %

• dy 1 •

OT
defd»

‘
\

t
t

w
56. In this application of the general theorem of Prop. VI.

y is assumed to be a function of x and consequently x is the

inverse Junction of y. So that is the differential coefficient

of y with respect to x when yt
is considered as a function of x,

dx •

and is the differential coefficient of x with respect to y when

x is considered as the inverse function of y: •

e.g., if y=ain x
9
then jp— sin

~x

y,

c dy_ cos x 38),dx «.

i •
0 dx I o .'uu \

dy *J\ ~y*
(Ex. 2, ibid.),

dy dx^
c

dx * dy Jl -y2 *Jl- sin3#

57.

The same difficulty occurs in Arts. 55 and 56 as that

discussed in Art. 54.

if v-A*) (i).

and this equation be supposed solved for x, the result will be

of the form * x «= F(y) * (2).

Now) if x be changed to X in (1) and Fbe a value deduced for

y, then if Fbe substituted for y in (2), X will be one of the

voices thence deduced for x.
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X—x
Hence Lty—^ when Y—y is indefinitely diminished is a

value of the differential coefficient of x with respect to y, as

derived from equation (2), while I^'x^’x w^eu

definitely diminished is a value of the differential coefficient of

y with respect ter a? as derived from equation (1). And since

we have

Y—y X—x_~>
x^x : y^TY

dy cte ,

'dx'dy~
9

when the limit is taken, the proper selection being made of the

values deduced for 2=^ ancl %
dx dy

*58. This may be illustrated geometrically. •

Let the curve y =f(x) be drawn. * Let the tangent to the

curve at the point P, (cr, y), make an angle \Js with the axis of

x. Then, by Art. 37, ^= tan
;
and in the same way it is

obvious that^= tan (90— \[s)= cot so that •

^.^=tanV'C0tV'=l-
dx dy

Suppose however that the ordinate through P cuts the curve

again at PV P»PZ, ...
'

Then, for a given value of x there are several*values of y,

and therefore also for a given increase Sx in the value of x
there may be several values of Sy the increment of y. But if

it be carefully noted that the Sy and Sx chosen are to refer to
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*

branch of the curve at the same point when we con-

as when we consider

stances,, these expressions are respectively the tangent and

dx
dy'

then, under these circum-

thsjame

aider

cotangent of the same wngle, and therefore their product ‘is

unity.

We say the same branch of the cuwe, for it may happen that

more than one branch of the curve passes through a given point

«P, as in Fig. 13, and then there are two or more tangents at P
d/it doe

and therefore two or more values of and at P. But the

product of the ^ and the which belong to a/ny the same

branch through ,P, is unity. • <

5$. Differentiation of Inverse, Functions.

When the differential coefficient of any function ofx is found,

that of the corresponding inverse function is easily deduced by

means #f the theorem of ^rt. 55.
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For let x—f(y), and therefore y—f'H.x); then

dx

cCy'

dy_ JL_.

dx dx’

dy

therefore \x)=^

But

37

EXAMPLES.
»

1. Differentiate by moans />f the definition and the foregoing

rules:

—

»

(»•) y = x logfcin x.

(iL) y — xja* - £*.

(iii.)
c2

*

y = -e.

(iv.) y=ya^x\

(v.) y = 2Jau, where u = a nax.

(vi.) y = e
Vu

. where u = log sip v, and v= (sin w)w, and w= x\

Tfre results of any preceding examples may he assumed.

2. If uv u
2,
w

3
,... vv v

2%
v
3,...

be functions of a?, prove that

d u^uH
...un u2 .. un f 1 dur dvr\

dx v
1
v
2
v
3
...vn

~ v
x
v
2

. .vn \ A=iwf dx "r=iyr dx /'
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STANDARD FORMS.
c «

60. It is the object of the present Chapter to investigate and
tabulate the results of differentiating the several standard forms

referred to in Att. 38. «

*

We shall always consider angles to be measured in circular

measure, and all logarithms to be Napierian, unless the contrary

is expressly stated.

It will be remembered that if w=<p(x), then, by the defini-

tion of a differential coefficient,

.
du-r* <t>(x+h)-<f>(x)

dx
~Uh' 0 A

•

61. Differential Coefficient of xn.

If u= <f>(x)=xn,

ten
t

<j>(x+A)= (a;+A)
n

,

,j du r . (£B+A)B—aJ"

,d —
L
—

/, .
A\» .

...

Now, since It is to be ultimately zero, we may consider
^

to be

Idas than unify, and we can therefore; apply the Binomial

Theorem to expand ^1+ , whatever be the value of n; hence

du T . aPf A n(n— 1) A8 ,
n(n—1)(»— 2) A*

, 1

s, -Vr g+-s— J»+

}

•
jl X (a convergent series)

J

38
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62. If it be required to find the differential coefficient of without the

use of the Binomial Theorem we quote the result of Ex. 6 p. 10, viz.

:

and proceed as follows

:

dx M- Das before]

— Lthsso&f
1
: Hr-'
Kh'

= Lintr-tiC—
i £

where

=nafn~

63. Differential Coefficient’ of ax.

If u—<p(x)=,ax, ,

<f>(tc+h)=ax+h,

and
du, T . ax+li—ax^=£4=o—A

-

_ ak— 1
=axLth=o ~

h

= a*log,a. [Art. 21 ]

Cor. If u= CT
' dx

=^l°S‘e=^

/* 64s Differential Coefficient of logaX

if u=<f>(x)= logo®,

+ A) = log,/®+ A), ,

and
du T± log0(*+A)— logo*
-&~Lth=0 A

=Z**=<%log.(l+!).

Let |= 2,
so that if j=0, 0= oo

,
therefore

•

-IxC. 108.(1 +i)‘
_

=-log0e. [Art. 20.]
*

x •

Cor. If u ,
’l, 1

as-i 10^"?*
«
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65. Differential Coefficient of sin#?.

If u=0(a?)= sin a?,

<p(x 4- A)= sin(a? 4* A),

• du T . sin(a? 4-A)— sin x
and

aS" 2*-*
A

f
c°s(*+5)o • h

2 31117

= Lt\•hi 0-

. A
sm

2
= ^ COS (®+ *)

If

and

= COS X. [Art. 18.^

Differential Coefficient ef cog x.

'

s

* u=‘<f>(x)= cos a?,

<f>(x -I- A) = cos(cc 4- A),

dk T cos(a? 4- A)— cos x
dx “ Uh=0"

A

= — Li]

ci • A .

2 sm s sm
h= 0-

(*+f)

T,

sin
2 • / ,A\=—Lthss0—

k
— sin^+ 2/

If

and

= —since.

67. Differential Coefficient of tan#?.

w= 0(ce)= tan #;,

^(cc 4* A)— tan(a? 4- A),

du
7

tari{cc4-A)— tana?

r

—

— Lt
"* ^)coij g "" cos(a?+ fe)3in x

hs=0
Acosa?cos(a?+A)

1
T

sin A
*=0

tA cos a; cos(a?+A) c

co&2a?
=sec%e.

68. Differential Coefficient of cot#?.

If
f u=0(a>)= cota?,

^(a? 4- A)= cdt($ 4- A),
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and
du T . cot(a5+A)— cot 05

25 0
A

— Tt
cos(a?+ A)sin x— cos x sin(a?+A

)

**° Asinas .sin(a;-f-A)
~

_ r sin A 1-- Lth
=°-jr'i

i

binder
1

sin x sin((»+ A)

— cosec2as.

69. Differential Coefficient of sec, a;.

If

and

u= (f>(x)= necx,

</>(x+A) = sec(a;+A),

cito r «ec(®+A)— sec as

<U
~ LtJtsi0

. ~h~~
cosoj— cos(aj'-f^)

'Acosa;cos(a:-f A)

. A
rfn

2
8in(®+

2)
^rb~ 0 k cos a? cos(£C-J- A)

since

cos2a?’

70., Differential Coefficient of cosec x.

If

and

u= <f>(x) — cosec x,

<p(x+ A) as cosec(os+ A),

» du T cosec(ce -f- A)— cosec ce

o A

— Ti
sin#— sin(as-fA)“ Aes
°Asiucr sm(ce+A)

sing 'cos(a5+|)

Lt^o—jj—
yiQgjaiu^^.^

2

COS X 4

sinV
9

71. Inverse Trigonometrical Functions. •

For the inverse trigonometrical functions it seems useful to

recur to the notation of Art. 43, and, t6 denote ^(as+A) by U.
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y? 72. Differential Coefficient of sin
-1®

If

Hence

.

therefore

u= — sin-1®,

U— <f>(x+h)= sin * *(®

+

h).

x=Binu, and x+h= sin U ;

A,=sin U— sin u,

U—

u

and
du T . U—u T .

dx
~Lth=0 &

~Uu-

11

U—u 'j

ILfc IIr
2

. U-uC
l
8in

2 J

“sin U—sinu

1

cos-
a+u

2

* cos V/ Jy—,sin% */l—

x

2

T3. Differential Coefficient of cos
-1®.

If

Hence

therefore

and

U as (j>(x)= COS-1®,

£f= <!>{x+ h)= cos -:
*(®+ A).

®=cosu, and ®+A=cos U ;

h=coa U—coau,

du_ T , U—u_ j. IT—u
dx~ h~° h ''““cos U—coau

= —LtU=*

JL
sin u

U—w '

2

tf-u
sin sin

1
U+u
2

1 1_
COS8!**

-
*/l—

74 Differential Coefficient of tan -1®.

If
t

Hence

therefore

and

u= 0(#)= tan" 1
#,

17= 0(#

+

h) sas tan "X#+^).

sc= tanu, and #+&= tan CT

;

fc=tan ?7— tan w,

dx
~ Lth=0^H ^““tanV- tanu

— Ltjf»u*i

COS*U-

=

• Uj—u
aiq(U—u)

1 1

cos ITcosu

sec*u l+tan*u 1+®*
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J0Wued

f
tial Coefficient of cot* 1®.

u=4>(x)= cot* 1
®,

U= <f>(x+h)=cot-\x+h).

ms x=cotu, and £C+/i=cot U
;

jtW A=cot U— cottt,

du ,, U—u T U—u,
V dx~Uk=0~~k

~ Ul,
=“cot IT- cot um T-i

u-u . TT .

p
.= - Lt

n̂JU-u)
sm

^
sm

U

K sin u
cbsQchi l-j-cot^u

Krential Coefficient of sec
-1
#.

U= 0(^) =SOQ
_
%,

P J5=secu, and £c+A= aec 17,

Fly h= sec 17— secu, *

& du I7-u rx I7-w
f -j = Lth-o——

=

Ltu-U fT
—

dx h sec£7— secu

T . U—u jj .

-Ltu-u Yf cos u cos U
COS U — COS U

l-fcot^u

— Ltu-u

U-u
2 cps u cos U
U—u . U+u

sm u sec2™*/! -

‘V>-1

Xs/x*— 1

77. Differential Coefficient of cosec
~ 7

r.

If u

=

<p(x) =' cosec
-

• If=^(aj+A)= cosec" 1
(a5-f A).

Hence x= cosec u, and x+h~ cosec U ;

therefore &= cosec IT— cosec u, •

nri/3
du r . U—u 17—u •

- dte A
#

cosec 17—cosec u
Tj. U—U . . *T

u . ; oiusmu—sm U •
sinu sin U

1

!+«**
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U-'i

— — Ltu-
sm u sm xr

U-ut
C08--

U+u

sin2i&__ _ 1

COS </ cosec^Vl— sin2it

1

u s/x*— L

78. From the importance of the results it has been thought

preferable to deduce the diifciential coefficients of the inverse

functions sin“ 1r etc. immediately fiom the definition; but by

aid of Prop. VI of the preceding chapter we can simplify the

proofs considerably

Ex ) F
we have

whence

and therefore

and since

we hpve

Ex (ii ) If

we have

whence

att<? therefore

and since

w ' have

«=9in“l
r,

"-sin u
,

dr
_ = COb U ,

du

du
=. 1 ^ 1 1 ^ 1_

dx di cos if Vl-smru Jl-x1
'

du

cos
-1^—Z— sin

_1
r,

d cos
1

1

du

1

v/l-H
n- tan_1 r,

i — tan u

,

dlC n
_ ==sec a ,

du
du_. 1 _1 ==_1_.
dx sec 14- tair?/ 1+#2 ’

cofc~ J^=
(

dcot-y^
dx

- tan -1

1_
1+^*

Ex (m.) If

we have

whence
ft

1

and therefore

whence also

wavers-1
#,

a:= u=l — cos u ,

^ -sih u

;

du
du_ __ 1 _ 1_
dr smw1

^i
t

cos^ J2x-x2
’

dcovers~1x_ _ __
1

dx ‘
t
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$&e Integral Calculus.

P any fexpression in terms of x given
,
can we find a

#fito'h\ch that expression is the differential coefficient?

Pli$rproblem here suggested is inverse to that considered i$ the

Differential Calculus. The discovery of such functions is the

fundamental aim of the Integral Calculus. The function whose

< dferontnd inefficient is the given expression is said to be the

'itegial” tf that expression #or example, if be the

bOem-tuil coefficient of <p( c), <p(x) is said^to be the integral of

j>(i) Moreover, since <J>\x) is also ’the differential coefficient

("
) f-C, C being any arbitrary constant disappearing upon

dirteif*uti\*tion, it is Customary to state that the integial of

ip(x) ' y( r) + Gt
C being any arbitrary constant

Tfy notation by which this ir» expressed is

t

f<l>'(s)JjC= <t>(L)+C,
*

J*f>(ji)dxL being read “integral of ) with lespect to x”

Thus we have seen
' d

,

. ,
. (sin x ) = cos t,

dx

(

|(ta,i-^)=r^ 2 .

whence it follows immediately that u

/cos xdx= smx,

y * dx= tan “

1+ a2

etc

,

where the arbitrary constant may be added

desned

80 We do not propose to enter upon anjgl

\ anous operations of the Integral Calc tlflHE

i

that for integration we shall require

of standard foims that is establishe^fij§K^'«p

tabulated below* and it is advaxrffc

heie in its double aspect. j

*

V 1

standard forms for

Moreover, we shall

articles.
r" " ’

"

"

in, each.

able to use- the

our subsequent
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Table of Results io be COMMITTFD TO £ $C

tt— rn
dc

flndx
*

‘ if

i •*<

u=nx ~M «= a*logta fa edr
»

n— <
z

dv
f xdc -<•

KJ|II>
dn ^ ,

a 7 1
g*^ /": - logc«C

u= logcr
or

_k>ga*
l0goc‘

1/ = si 1 r = cos r
(M *

/cos .rc? r --sin a?

= os /
— smcr

*

dr
/ ill rrLc — —COS L

u= tan r
dx

c

f^LQ
lrdm = tan o'*

u,— cot a;

(^ Ll— — cosec2j
djr

/osec^x = — cot r
L

a= sec £r

dn _ sin x

<Y 6 cos
f'm

?

rdx
J COS2

l

-= see £C.

a = cosec r
rftt COS J3

r/j sm2 r

fQ0'*dr
J Sill

2
*

— — cosec

x

C .

n,= &ui \r

tl cos lr

= tan lXj

or — cot _1
a?

=5=sec”V,

or — cosec
~ lx.

sssveis" 1
^,

u= covers' 1
? or — covers

~ xx
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81. The Form uv
.

In functions of the form u”, where both u and v are functions

of x, it is generally advisable to take logarithms before proceed-

ing to differentiate.

Let y = uv
,

*

then logty= v log,a
;

therefore — ^
logc?j-f v .

- Arts. 48, 52, 64
y dx dx a dx

,

' (lv + v
i
lu

\
dx \ °e

d'x u dx)

Three cases of this proposition present themselves.

• d/i?

I. Tf v he a constant and u a function of x ,
=0 and the

* dx

above reduces to ^= v . uv ~ 1

,dx dx

as might be expected from Aits. 52, 61.

II. If u be a constant and v a function of a\
>
=0 and the

dx
general form proved above reduces to

jjWlog

as might be expected from Arts. 52, 68.

III. If n and v be both functions of xt
it appears that the

general formula »

* dy , do
,

,du
a£

=tt’i°&udx +rtL a*
• ,»nm of the two s]>ccial forms in I. and II., and therefore

* > ntiuy, instead of taking logarithms in any particular example,

' frst it constant and then v constant and add 'the

w //.? <f? brined on these suppositions.

$j&hall presently (Art. 162) j further that if y be any «

•omph » Nnction of x
,
then, in, whatever way the various

hfip\ i , *bions of which y is composed be connected together,

t* x*
0
k «e differential coefficient of y is the algebraic sum

i>> v - 1

1

mtial coefficients obtained severally by considering

i U '* Hons but one to be constant. •

y
ifeferbolic Functions. * *

?he rential coefficients of the direct and inverse hyper-

\^fmmrnsBxe now appended as editional formulae. Their
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verification is very simple and is left as an exercise. They

will be found useful by the more advanced student by reason

of their close analogy of form with the results tabulated above

for thp direct and inverse trigonometrical functions.

* •

Results for Hyperbolic Functions.

u = sinh x - ^
du

dx~
cosh x. ycosh xdx ~ sinh x.

. t
,x+ c

~ *
u = cosh x-

£
#

du _

dx*
sinh x.

•

/sinh xdx = cosh x.

, , sinh x
u = tanh x -

,
.

’Cosh x 1

dit _
dx

secli2#. fiedbrxdx

i

- tanh x.

cosh#
n ~ coth

sinh x
du _
dx^

- cosepli /eoFech2avfa:
- - coth x.

up scch x- \ .T cosh x
dv

dx
Birth#

coshr# J cosh-#
- - secli x.

*
t j

u ~ cosecli x = — -

—

smh x
du _

c dx
cosh x
sinh-#

' f^ x.dr
J smh-a:

- - cosech x.

u - sinh" *r = log(a:+ a/1 -1 x2
). ^

“ 1

•Ji f

r dx
JJ\

-sinh” 1
*:.

u = cosh* lx = log(*x + fjx~ -
du 1

- 1

'

r dx

Js/x*-

1

- cosh " lx.

u = tanh * lx - J log |

+ 0
.

l-x
du
dx~

r dx
J] ~x°-

= tanli" 1
^*^!).

x * I

u - coth lx = ^ logX — 1

d\‘.
dx

r dx
J?- 1

=-COtll' ,
a?(X>i;.

• i
u = secli

" 1x - cosh L .

X

du 1 r dx - - sech " lx.
dx |L 1 i... JXhJ\ - xl

u - cosech
~ lx = sinh ' 1

1

.

X
1.

1

X\tx8
-f 1

r dx
J x*Jx 2 +

1

- - cosech " 1x.

#
S4. Transformations.

Algebraic or trigonometrical transformations are frequently

useful to shorten the work of differentiation.

For instance, suppose

•We observe that

whence #

Again, suppose

Here*

and therefore %

y^tan- 1^.
y= 2tan-l.>*

;

dif _
dx A"’

J
i —x

y

—

tan* 1#+ tan"1
!,

dy 1

U*T l+.r2
*
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As another example suppose

therefore

=J-icos- 1x2 ;

<h)^ .
dr s'l

S5. Examples of Differentiation. .

Ex. 1. Let y— V~> -where z is a knbwn function of x.

Here • y—^,

whence

dz r 2 N/;

,lV _<h, \lz
(jirt B_

dx dz dx

_L .
* .

2 sjz dx

This form occurs so often that it will be found convenient to commit it to

memory.

Ex. 2. Let
>
y=rev/u»t*.

Let Ait x— z am l cot x --'py

so t ha t y-- e% where z — *Jp.

Now
#

G; * )

. (’Ex. 1 above.)
dp 2 N>
dp
/ — - coserv,dx

and (Art. f>3) ^ — »osei*u* .
*

.
cv't-t*

dx dz dp d i 2 s/r(,t ^ ,

With a little practice these actual suhit 'tut ions can bo avoided and tin*

following is what passes in the mind : -
,

cf(ei/w>t*)_ ti((>\Avtx)
.

d(\f r) t/(cot.r)

t/.r </(Vcol ./ ;
(^eot j ) dj

— eV'iotj; .
^

. (
— CONCC-V).

* 2Vet 4. .r

Ex. 3. Let y— (sin .r) 1"*3' cotfe^a -f &.r){.
%

Taking logarithms
* *

logy— log x . logsin x + log cot[e r
(/Y + hr)).

The differential coefficient of log y is *
,ydx

%

J5.D.C. D ,

and (Art. f»3)
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Again, log# . log sin# is a product, and when differentiated becomes

(Art. 48) - log sin #4- log x . -A- . cos #.
# sm #

Also, log cot{#»*(<*+&#)} becomes when differentiated

c.t{>(l+£r)}
• ;

.
*

. ^= (sin . cot{e\a+ for)} [~-log sin #+ cot x . log #
dx c L.r

- 2 + &+ fo* ) cosec 2(e*a+ for)J.

When, as in the above example, logarithms are taken before

differentiating, th? compound process is called Logarithmic

Differentiation. It is useful to adopt this method when vari-

ables occur iu the index, or wli&icthe function to be differen-

tiatecl consists of a product of several involved factors.

Ex. 4. Let

y~Ja2 — 6Jcos2(log jl).

dy _dsldl - 62cos-(log #) d{a1 - ^cos^log x) } dfcoa (log v) } d(\ogx)

dx~~ d{a?~ b2cos-(logx)}
X

cJ{cos (log#)}
X

d(log.r)
X

dx

=J{«
3- &2cos2(log #)}“* x {

- 2&Jcos(log x) } x { - sin (log a )} x I

62sin 2(log#)

Wa2- 62cos-(log #) c

Ex.
c
6. Differentiate x6 with regard to #2

.

Let

Then

x2 —z.

dW
<faf_dx5 dx_dv_5x*
dz~ dx * dz~~ dz~ 2#

dx
6#3

Ex. 6. Given that #3+y3 =s3a#y, find the value of

Here 3*8+ 3y
2^

=

Za(jj+

i^L x2- ay
dx y*-ax

giving
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EXAMPLES.

Find in the following cases

:

ax

i. y

2. y-

3. y =

4. y

5. y

Jx.

1

*Jx'

a + b.r

.r + I.
x

7. y = (a + bx*)/c{fit5.

8. ?/ = sin(a+ 6a*).
,

9. y = sin(a + 5a;
M
).

10. y~ sinVa:.

11. y = Rsm a*.

12 . 2/ = Vsm\/aJ.

13. y = sinV.
14. y = siirtc2.

15. y = (sin^a:)2 - (cos^a:)2.

16. y = 4an_1(log x).

17. y = since
0
.

18. 3/ = x log x.

19. y = e*log x.

20. y »sin(e*)logo;.

21. y «tan”
1(e*)logcotfic.

22. y = (x + a)
m(x + b)\

2 + 052

1 +as’
. >

ft +a?.

23.

24. y

v 25. y— sja1+ x1
.

26. y =>/cosha:. ^

27 y~ log cosh a*.

28. v^tan^tanhaO.

29. y-vers"1®2
.

<30. y— vers'*1log(cot x).

31. y— cot^cosec a?).

32. y = sin”1—
s/l+a;2

33. y= tan_1
1

• —

34. y. tan-vJ»r m
'

|
1 + a;3

-r35.
#

y = sin
m
a:cos

n
;&.

*36. y — (sm" la,

)

m
(co8~1a,

)

tt

.

37. y = sinolog (log?)2.

L 38. y =J!—

.

•
,

X 1 + X

40.

, Jx^-a2

41

^

V
~*Jl+x + x*

'-'vizir
43. y= log^.

•^44. y - cos"1^ - 2a:2).

46. y = 6 tan-1^- tan'1
-^.

»•

arcos^a:
4/. y = -.

—

i48. y-acos(«sin

49. y«sin

-il>

xj

.^ + 6 cos a;

6 r a cos a

50! y^e*1

<51. y * e“*cos(5 tan"1
®).

<•52. y «tan"
1(a

c*. a:
2
).

4 53. y a* sec(logaN/a
2 + x2

).

54. yF=tan“ 1® + tanh"1®.
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60. v = tan

61. y =

t •

62. y
63. y

64. y

65. y

66. y

67. y

68. y

69. ,y

66. « = tanh-i
3a!+!C,

+ tan-i
3^3

.y
1 + 3** 1-3**

\56.'y=- log(loga)-

v 57. y *= log
n
(x), where log

w means log log log

.

(repeated n times).

1 t/b + a+ Jb - a tan

58. y = —.~ — log* - "

^]~ ai
tan

|
c

59. y - b\wr l
(x,J 1 - jr

f
— JxJ l - /-).

i
4^1#

1 - tx

.

74. y

-- 10™

.

=*<
1 •

= x*+ ay.

= (sin x)CMX + (cos a ,

)"
in *.

= (cotx)
cot* + (cotha-)

l °thac
-

= tan^a'V1*1*)-^5

1 + a*”

70. //

i

yPd^y=:sin"'1
(t»

tan lr

).

/•I 4 s/a-y
11"

\1 -i ^7
t 75. ?/ — (cos .r/

otv
.

76. v£=(cot~ 1
a)*'.

^77. y = ^l+ly + .r>'i

78. y= b tan-1(
x
+ tan _1^YJ

\a x)

79. tan y-- e^'sin .

80. ax2 + 24x1/ + fy/
2 - 1

.

81 j’ “ l*)1
,

82. (cos x)y = (sin y)
x
.

72. y =

t

i

73. y =

83. *=-«'” «a •

, - - - - 84. *=ylog*y.

y(l+cos™)(l-sin™). 85. y = *».

/ /
- 86. i/ = w'*.

: tan”Wvx + cos”1#.^= * log^*
88. a*5 + 2lay + by* + 2gx+ 2/y + c -• 0.

80. *“
Sf“ = (* + y.)

n,+n
.

,90. y = «ta,,
‘ l

*'log
t

sec**3.

I

91. Differentiate log
10
# with regard to x\

92. Differentiate (x2 + ax + a2
)

n
log cot? with regard to

» »
*

tanTl(« cos bx).
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a + b tan * |

93.

Differentiate log,-{ -- } with regard to

a - b tan

'

rt
2cos^-i2sin^.

Ji Z

94. Differentiate with re^rd to sin^rr.

95. Differentiate tan“1N^— -
~

* with regard to tan“hr.
x 1

96. Differentiate with regard to N/I - jr4 .

Jl+xt-Jl- X*

97. Differentiate sec -10 } * with regard to Ji - as
2

.

J/ f* I

| J
98. Differentiate tan _1

n
with-regard to sec' 1

. __
, n/1 -*s -•* “

99. Differentiate tan" 1—-—- with regard to sin
-1—

^

1 - j? 1 + .c

100. Diffcientiate a"log tan"1
*: with regard to —

—

>

:

101. Ify= if provo y
dx \-y\ogx

102.
+ *

pro™g-}
+
2,

.
1 +

1 + ... tooo,
+ 1+'. *

1 +w ,
+T+ ...

103. ify=*-+* 1 !
* *" X+ .. to 00,

pr0V°^=2-Sl<te 2 -*‘4
+ i

104. njr-Sfi sin *1 +
1 + —-— cos as •

* 1 4. - -

1 4- ... to oo,

dy (1 + y)cos a- +y sin as

prove / = •!—r dx 1 + 2y + cos x - sm x

105. If y =\fsin x + \sin x + \/sin x+ \/etc. to co,

dy eos as »

Prove dxW:

T

106. If /Sn=the sum of a G. P. to n terms of which r i^ the

common ratio, prove that • •

[Coll. Ex.]
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107. If£=-„+i I , prove
Q J- *8+ - + 3’

108/ Given 6'»1 + rcos * + +

- (
JJ

) = ±
1

dAQ) Q-Qi

[Coll. Ex.]

and

show that

« „ • * ,
1
2sin 20 ?*3sin 30

o = r sm 0 + - ^ - +—
3
— +

c

cdS gHf m /c* + {MtSnO
dr dr

109. If y sec 4.x*, prove that

1^1 jO w]lcre $ - tan a:,

eft (l -6^ + <y

[Coll. Ex ]

[Coll. Hx.]

110.
c

If y = e~
xt
^c,~ l {x Jz) and s4 + a;

2«= ,

jc
5
l
find

J-
in terms of

x and z.

111. Prove that if x be less than unity

l

dy

dx

[Tximt\ Sokol.]

2x 4X3 8x7 i . ,. 1
-i , + - . + - + ... ad inf. - -

i + x 1 + x2 1 + a,*
4

1 +
t
xs i - .r

[Coll. Ex.j

1 12. Prove that if x be less than unity

1 ~ 2.r 2x - 4^
\ v

x i- .r-
"**

1 — *
J — l 4 ^1—

(xfl + otP

113. Given Euler’s Theorem that

ad inf. =- -i f
- - .

1 +x+ x*

Tm xxx x sin x
Af„_.cos o cos cos _ ... cos _ = -

2 23-

prove * tan
2 + 2̂

tan
|2 +

ptan
|3 +

... ad inf. -i-cot*,

and psec*? + ^sec* * +lsec*£+ ... ad inf. -comc**- J>

114. Given the identity

(2 cos 20- 1)(2 cos 2W - 1)...(2 cos 2
n0 - 1)

=
^

' 2 COS £V + 1

. , . v>r-» 2rsin 2r0 ' 2"+1sin 2n+10 2 Sin 20
prove that 2^, 2r0 - 1

~ 2 cos

2

n+10+ 1 2 cos 20+1'

115. Giv.tfi

sin<£sin(2a-i-<£)sin (4a+ </>)... sin {2(«- l)a + <£} = ^,4^

where 2na = 7r
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prove that

cot <£+ COt(2a + <f>)
+COt(4a + <j>)+ ... 4 C0t{2(»- l)a + <^}

= n cot n<l>,

and that cosec2c£ + cosec2(2a + <f>)
+ cosec2(4a + <f>) + . .

.

+ cosec2{2(w - 1 )a 4- <£} = i^cosec2^
116. From the expression for sin 0 in factors prove

0 cotfl=i + 2^;£"-*

2 o 1 9
and hence that w coth tt = 1 + ,— -

0 +\—-- 4- ,

-
oll + . . . ad inf.,

1 4-J 2 1 4- 22 1 4- 3*

and that
f
cotll^l +^ + r|-42+ x

*-#+ -

117. Prove *““!?= V"*. 1

86 (2«.-l) 2
jr
a -40-

and deduce
J
tanh^’= ^ * - ad inf-

“d
*
**nh

2 ' TTT>
+
fT3<

+
5Ts*

+ '

'

44“
118. Prove ? coth a; = A 4* a:

2VB~"-—^ .

2 - ^/«=i or* 4 n*7r2

119. Prove that

1

' nx~x 1 +_l_ + 2vra

,
2/*7T

„_a as -a cos—

x -a x - a a; 4- a

but

as
2 - 2aai cos— 4- 2

n
if n be even,

*

2nr
n-i x — a cos- -

-=^ + *2^ n
~ '2r7r

x~ - 2ax cos n2

n
if n be o^* 1

120. Prove that

ri3?~ l(xn — a"cos 6) _
HF~- 2iV4

cos VTaF1 “2jt=o ;

2f7T 4- 0
a; - a cos

r=i»-I W

o 0 2rir 4* $ ,
n

£c2 - 2oa? cos 4- a2
n

121. Determine the coefficients*A lf J 2 .. Am so that*^

*

[{*
m - + A^2 -••+(- l)

m
-4m}e*] =a?V,*

m being a positive integer. [Uftiv. London, 1890.]
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122. Writing sgu for singdw, etc., establish the following results

—

(“) Jx
giX = CSX'

. (P) ^ Sg a: = cg2x.

. > d , 1w ***•-*•
123. The functions xv a*

2 ,
x
3 . . Sxn being defined by the equations

x
v
=* s/xijx, xr+1 = s/xs/xxr9

find the differential coefficient of the function towards which xn tends

when n increases indefinitely, « [Frenet.]

124 If sr denote the sum of the rth powert of the roots of the

equation xn +px
xn

~l +^2
a3
M“2

f
+ . . +;;n 0,

prove that if the coefficients be expressed in terms of 8V .v
2 , .. sn,

theh will [Brioschi.]
* dsr r

1 25. Defining the Bessels function of the order as

T ( \ - x" (l-
x2 x

4

1
” 2“Tll 2(2Tt+T) 2.4(2n + 2)(2n + 4)

' "7

prove ‘

(1) ^./0(.r)-- -Jfr).

(
3)

(3)



CHAPTER TV.
%

SUCCESSIVE DIFFERENTIATION.
I

8G. Repeated Operations.

* ' d
The operation denoted by is defined in Art. 37 without

any reference to the form of the function operated upon, the

only assumption made being tlr.it the® function is a function

of the same independent variable as that referred to in the

operative symbol, viz. x . It is moreover clear that the result

of the operation is also a function of x, and as such is itself

capable of being operated upon by.tlie same symbol. That is

to say, if y be a function of x
7 ^ is also a function of xt and

therefore we can have as a true mathematical quantity.

And further, it will be thus seen that the operation ^ may be

performed upon any given function of Cc any number of times.

87. Notation. •

The expression is genera1 T
\ abbreviated into y .

or and is called the “second derived function ” or “ second

differential coefficient ” of y with Respect to x. And, generally,

d •

if the operator^ be applied n times, the result i$ denoted by

idx) y or 5#*' an^ *S ca^3<* ™th derived function dr n^

differential coefficient of y with respect to x. •

67 *
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It will be convenient to denote the operative symbol ^
by D, which, in addition to being simpler to write, makes no

assumption that the independent variable is denoted by x

;

and in many problems the independent variable is more, con-

veniently denoted by some other letter. For example, in

dynamical problems the time which has elapsed since a given

epoch is frequently taken as Vhe independent variable and is

denoted by t, while the letters x, y, z, are reserved to denote

the co-ordinates at that time of the point whose motion is

considered. •

It appears then that if we use indices to, denote the number

of times an operation has been performed, we may write

»4 '

'

D.Dhj = Dhj = d^,

88. Analogy between the, operator^ and symbols of quantity.

Thu index notation employed above to denote the number

of times an operation is repeated is exactly analogous to the

index notation used in algebra to denote powers of symbols of

quantity.

If a be an algebraic quantity, the algebraical notation for

a. 'a is a2, and for a. a. a is a3
,
and so on; the index here

denoting the number of factors each equal to a which are

multiplied together. But, as defined above, there is no idea

of multiplication in D . D or D2
,
but a simple repetition of an

operation . In the same way Dn has no quantitative meaning

in itself, but represents an operation consisting of employing

the process of* differentiation n times. For example, the

difference bekween such quantities as D2
y,

(Dy)2
, and D2

y
2

should be carefully noted. T
4
he index in the first case has

reference only to the symbol of operation “ D,” which is there-

fore to be applied twice to y.
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•

In (By)2 the index is a purely quantitative one used in the

algebraical sense to denote the product By x By.

While in B2
y
2 we are to understand that the square of y is

to be differentiatedvtwice.

Tliat the ultimate results are different may be easily seen

by taking any simple case,

e g-, if y = f‘
then By = zx,

and ’ Dhj = 2
k (1)

Again (Zty)
2 = 4xJ, (2)

whilst y
s = x*,

and * By2 = 4x3,
giving i)2 ?/* = 12x2

. '...(3)

A comparison of the results (1), £2), (o), will at once satisfy

the student of the truth of the above remarks.
’ *

i

89. The operator D satisfies the elementary rules of Algebra.

We will next consider how far the analogy goes between

symbols of quantity and the symbol of operation which we
have denoted by B. *

The fundamental rules of algebra are three in number and

are known as

(1) The “ Bistributive Law’\

•(2) The “Commutative Law” and

(3) The “Index Law”
These three laws form the basis of all subsequent algebraical

formulae and investigations.

(1) The Bistributive Law is that denoted by

m(a+b+c+ ...) = ma+mb+mc+ ... $

Now, in Chap. II., Prop, ill., it is proved that

B(u+v+wJ-...) = Bu 1 J)v+Bw+... f *

so that the symbol f) is distributive in its.operation.

(2) The Commutative Law in algebra is that expressed by

• ab^ba.

Now, in Chap. II., Prop. II., it is proved that

Bcy^cBy,

sq that the symbol Bl^eommutative with regard to constants.

But it is clear that the

be interchanged
;
such an error wcyuld be sinfilar to writing
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Osin instead of sin 6. So that, while D is commutative with

regard to constants, it is not so with regard to varieties.

(3) The Index Law in algebra is denoted by

am .an = am+n,

m and n being supposed to be positive integers.

Now, to differentiate a resultm times which has already been

operated upon n times is clearly the same as differentiating

m+n times, i.e. y
Dm . l)ny = Dm+ny.

So the operator Dm .Dn is equivalent to the' operator 2)m+n

where m and n are positive" integers.

Hence the symbol D obeys *the Index Law for a positive

integral exponent. •

To sum up then, the operative symbol D satisfies all the

elementary rules of combination of algebraical quantities

,

wtth the exception that ii is not commutative with regard

to variables.

90. It follows from the above remarks that any rational

algebraical identity has a corresponding symbolical operative

analogue.

For example, (m+ a)(m+ b)=m2+ (a+ b)m+ a&,

so also the operation (/)+ a)(D+ 6) is exactly equivalent to

the operation L2+(a+b)D+ab.
Similarly, to the identity

* (m+a)2=m2+2am+ a2

corresponds the equivalence of the operations (2)+a)2 and

D2+2aD+<t2.

91. It is clear that in cases like the above an ab initio proof

may be given of the identity of the operations represented.

For instance, suppose it be required to show that

{D+ a)(D+ b)y = [D2+ (a+b)D+ ab]y
,

* we have (D

+

b)y - Dy+ by,

and (D+ a)(D + b)J = (D+a\Dy+ by)

= D{Dy+ by)+ a(Dy+ by)

= L2
y+bDy+aDy+r

aby

Dhy+(a+ b)Dy 4*aby

€ ,

* = [D2+(d+b)D+dU]y,
the result to be proved: and the process of proof is exactly

the same as that employed in proving that

(to+ a)(m' 4; b) -m2+ (a

+

b)m+ ab.
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However, such proofs are unnecessary after the remarks of

Art. 89
,
for they simply repeat in form the proof of the cor-

responding algebraical theorem.

It will now be obvious, for instance, without further proof,

that*since

(m

+

a)n =mM+nam* " 1+ a2mn “ 2+ . . . + a”,

we shall also have *

(D+a)n
y = (ifr+naD

*' 1 +^-—5 ...

= Dny+naDn ~ l

y f
—”

~P"*Da-*y+ ...+any.

92. Notation. *

0

The first derived function of y with lespcct to the independ-

ent variable is often denoted by yv y\ or y. This notation can

be conveniently extended, and we shall often find it convenient

to denote l)hj . D3
y, • .. l>*y

by Vv 2/2- y3> • •• 1/n,

or by ym, 2/(2),
2/

(3)
>.

•~y{n
\

or by v’> /. y"> etc.,

or by y> y< y> . etc.

It is clear however that the notation of dashes or dots p,s used

in the last two systems is inconvenient for higher differential

coefficients than the fourth or fifth by reason of the number of

dashes or dots which it would be necessary to use. The

bracketed index notation is a somewhat dangerous one, from

the liability of confusion with an algebraical index.
,
The

suffix notation appears to be free from objection in cases

where there can be no misundei landing* as to which is the

independent variable.
•

93. Standard Results and Processes.

The 7ith differential coefficient!? of some functions are easy to

find. ,

Ex. 1. If y= eax
; yt = ac**

; y2 = a?eax ; . .
. y„ = aV*.

*

Cob. (i.) If a = 1

y=‘ 6*,y1 = <f,...yn =?'- *
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Cor. (ii.)

Ex. 2. If

Cor If

“Ex'S. If

Mfc
3/i = (logea)^ log

.0 = (log,a)a*

;

Vi = (logea)V lo*.“ = (logea)
2a*

;

etc. = etc.,

yn = (loge«)
nellog'a = (log,a)na*.

2/ = log«(*+a);

1 » ] (-1X-2)
^"aj+a’ Vi (x+a)*>

2/3=1
(jj+a)8

, „ _ ( -j)( ^2X
(j"+a)n

=
(-Ja)"- 1

0n-l)!
(»+a)n •

1 = (r l)”n '

y x+a' Vn
(x-j-a)'11 1

1

2/
= sin(aa;+6)

;

2/i
= ct cos(aas+ 6) = a sin^#+ ^+

2

)

'

)/2 = a
2sin^ax+ 6+-^")

;

= assin^«£c 6+^ ;

Similarly, if

<

Cor. If

then?; when

* and, when

yjfEx. 4. If

Let

yn = ansin(a® 4- 6+

2/
= cos(a<E+&),

//n = ancoh(ax+ 6

+

c/ = 1 and 6 = 0;

y = sin x
, yn = sin(a;+^~)

;

3/
= cos x, yn~coa(x+

U
£y

y = e<w?sin(6.r+c);*

yx = aea*sin(6aj+c)+ 6eaa?cos(6aj+cJ.

& = rcos0 and 6 = r sin0.

. b
so that « r2 = a2+

6

2 and t&u 0 = -

;

e «*

and therefore = re^aiuQxc+ c+0).
* * Murphy, Camb. Trans, vol. V.
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Similarly y2 - rV*sin(6se+ c

+

and finally yn = rne?xs\n(bx+ c

+

n<f>)

. = (a2+ ?>
2
)^e^sin(bx+c+n tan 1

.

Similarly, if y = eaxcos>(bx+ c),

yn = (a2+ b^e^co^bx+o+n tan *

*jj)

.

As the above results are frequently panted, it will be well

for the student to be able to obtairf them immediately.

Examples.
I

1. Find the nih differential coefficient of cosrrsin, r.

We must first transform this expression trigonometrically.

Let ° cos r l-( sin.r=y.

Then by Trigonometry 2 cos x~y+

Thus

2 cos kr -yh+ *

y

2tsin x-y- i, 2*sm kr-y*-
y y
1 \

7
/„. 1\ J

27.

2

J
*3cos7> sin3

.*?— [y (y -

~= 2a sin 10.*? + 8a am 8.? + 6a sin 6# - 1 6a sin 4x - 28a sin 2x.

Thus 2°cos7j

— -sin 10*? — 4sin 8x - 3 sin 6a + 8 sin 4r-f 14sin 2 /,

and therefore
fin

29 _—(cos7# sin3
.?)

dxn

-= - I0*sin^l0^+^-4. 8"8in^8r+-^-3 . 6"sm(6r+
,

^
r

)

+8. 4“sm^4a;+-^+ 14 . 2"sin(2r+^.

Find yn in the following pases

2. y=sin3#.

3.
#
y=sin°j?.

4. y~ sin2# cos3.r.

3. sin4# cos4#.

6. ?/— sin x sin 2.r sin 8a.

7 . y^ePcosPx.

t 8. y—e^siutyx.
K

• 9. y= e^sin2# cos3#.

94. Fractional expressions of the form (bdth functions

being algebraic and rational) can be differentiated n times by

first putting them into partial fractydns. (Se4 p. 72.)
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Ex. 1. y-
(x-a)(x—b)(x— c) (a-b){a— c) x-a

+ b2 1 -» i

(jb-c)(b-a)
+

a)(c-6) tf-c*

(see note on partial frat tions)

;

therefore yn~ t
- ( — 1 )

M^!

(a- Z»Xa - c) ( — a)n+1 (6 - <*)(& - a) (,r - £>)
n+l

+ (-1)*n\

(

c

- a)(c - b) c)
n+l

'

Ex. 2. v=t — .^ !)*(*+ 2)

To put this into Partial Fractions*let x— \+z;

b2
(
- l)

nn!

then

whence.

1 1 + 2z+z2

J
22

’ 3+ 2

=
iG+,?+5«^) bydivi8ion

= i
+

5
+i

l_
32s 92 9 3+2

= J- +—5 +—

i

3(*-l)i+ 9(*-l) 9(r+2)

_(72 + l)’(-l)w 5n»(-l)«
3(^-l)”+i

+
9(tf-l)w+1

'Jn

4ri
n
l ( - 1 )

w

+
9(;r+ 2)

n+1‘

Examples.

Find the 74
th differential coefficients of y with regard to x in the

following casds :
—

1 . y= 7^ (x - a)(x - b)'

1
9 (3r - 2X# - 3)*

3. y-

4. y=

or -a*

{x - l)3(.r - 2)

95. When quadratic factors (whichr are not resolvable into

real linear factors) occur in the denominator, it is often con-

venient to make use of Demoivre’s Theorem.*

1 ' i
«

Ex. Let V—
(x+ay2

4

. fta^ {(35 +«)-|- <&}{(a;4- a)-tb}'

Then, y 2ib\,x+a— ib"*x+a+ib\’
1

*£.iouville, Journal de VEcoU Polytechniqne



SUCCESSIVE DIFFERENTIATION. 65

an<* Vn
2$ 1) n,

{(aj+a— £6)»+i (#+a+i6)n+1}’

Let x+a— r cos 0, and b=r sin 0

;

b
whence r2= (x+a)2+b2 and tan0=——

.

v ' x+a

Hence yn=^*^ !

{(cos 0— i sin 0)
~n “ 1— (cos 0+ 1 sin 0)

“ n “
*}

= (

2^£? 2<sin(w+
.

1^ *

= ^ ~~
sin(n+ 1)0 sinn+1 0,

* 6
where d= tan

~ 1 -

• (^+«)

Cor. If
f
y=tiui - 1

& , ?A =
(j

.+tt)iW

and therefore yn= - sin n0 sinn0.

where tan 0=— = cot y tx+a

i.e., °=2 -V-

EXAMFLfS

Find the ?i
th differential coefficients of y with respect to x in the fol-

lowing cases.

1. y= ,

-
* x1+ a

2. y— tan

3. y=
.r2+ a/

4. y=tanh“^

6- y=/-a<

8< ^-(iqr^+fto-
ED.C.

7. y=sin“l ® r
,.

1 +

8. y—xtAn^r

9. .y^tan- 1 r8
i!L?l_.

1 — .r cos a

ial ,-**+*•.
*

•r
3 -!

’ii a*

^ x4+ah

7

J+cr4

12 ?/=
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96. Leibnitz’s Theorem.*

To find the nth differential coefficient of a product of two

functions of x in terms of the differential coefficients of the

separate functions.

It was proved in Chap. II., Prop, iv., that •

d

,

v du
,

dv

d
It appears from this formula that the operative symbol^

or D may be considered as the^sum of two operative symbols

D
±
and Dv such that l)

l
only operates on u and differential

coefficients of u
y
while I)

2
operates solely upon v and differential

coefficients of v. For with such hyjnbols

• »a / \ du

and D
2
(uv) = u-^

,

whence D(uv)—v^+u^=D
1
(nv)+D

2
(iiv)

• =rD
x
+Z)

2
)uu

We may therefore write for D the compound symbol

Dl+A
. :

Now, since and D
2
are symbols which indicate differentia-

tions, they^ each, like the original symbol D, obey
i

the ffis-

tributive and index laws and are commutative with regard

to constants unci' each other. It therefore follows by formal

analogy with the Binomial Theorem that the operations

(Di+D2
)"

and
'^- 2I>,2+ ... +i>2

"

are identical.
*

Now

etc.

dv

dx ' dxn~v

* Commefcium Epuftolicum,
vol. i.
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Hence

=Diuv)“ +5a)"H

= {j?1
»+«jD»-»D2+^^Z)1

»-^+ . . .+/);»}m
— ^nVj

a.
C^V dn~ lu

\
n (n "- 1) c£

n ~ 2
tt

1
</.r

n ’
dccn_1 1 . 2 <&c2

’

c?xn
~ 2

, ,
<l
nv *

+--+ ,t

cte»
:

a result which may be written

(U L')n= UnV+ nC\ Un - i Vi+ nC/u,n -2 1>2+ * • • + uvw.

«

It appears therefore from this formula that if all the differ-

ential coefficients of u and, */*be known up to the nih
t
inclusive,

the 7i
th diffeiential coefficient of the product may at qnce^be

written down.

97. Extension. •

It will be also clear that this result admits of extension to

the case of a product of several functions.

For instance, if y = umu,
*

i?=™Ln+WH;r/+uvLw'

which, agreeably with the above nutation, may be written

Dy=(D1
+J)

2
+D3

)uvw

;

so that
(

! n
(u,mo)=(D1+D2

+Da)
nuvw.

,

This may be expanded by foimal analogy with the Multi-

nomial Theorem, giving a result which may be written

| dn . n ]
- dru d8v dlw h *

|
dxn^

UVW'
~
"r! s! t\ dx r ’ dx* *

tlx

the summation beingjcxtended tp a l positive integral values of*

r,s, t inclusive’otzero, which satisfy

, •

98. Inductive Proof of Leibnitz^ Theorem. '

From the importance of this theorem it is considered useful to add here

an inductive proof.

[Lemma. If nCr denote the number of combinations of n things r at a

time, then will nCr+*<7r+ i=»+i<?r+i.

This will form an easy exercise for the student.]

t*.
’ N

*
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4

Let and let suffixes denote differentiations with regard to x.

Then yx
= u^v+ uv

l9

y2
= + 2?^Vj

+

UV& by differentiation.

Assume generally that

tfn=UnV+ nCLUn . jVj+ nC-JHn-oiS 4- ... 4* nCrU„-rVr + „Cr+lVn-r-lVr+l
4

*1" - - - +w (a)

Therefore, d ifferentiating,

,

jnCA f 9Cj 1

+Un-rvr+,| + i'}
+ ... + nvn+i

•bii¥i(
f

t+ilfH-ri',+i + ...+uv„ + ],
by the Lemma

;

therefore if the law (a) hold for n differentiations *it holds for //+1.

Rut it was proved to hold for tw<\ differentiations, and therefore it

holds for three ; therefore for four
;
and &o on

; and therefore it is gener-

ally trhe, i.e.j '

( UV)n= U„V+ nCi Ifn-lVi+ ifi-Un-*'l UH tW 1\

.

99. Applications.
*

Ex. 1. T/^.r'sin ax.

yn — ,r*a"sin (ax f + M&eV'-^in^ei.r+
v ~

* 7r^

^

1 )g 2xan “ 2sin
71

>

*V
j

+ ”(” - »*- 3
^).

Ex. 2. Differentiate n times tiie equation

^y+A^^o.
dx1 dx

j"'/»+3+» • 2-r • y»+i
j

1

\vm
dx1

dn f x
X>/„+l+ tyn,

2/ni

dxn

* dny
dxn

therefore by addition

a+ (2rt+ i>y„+i+ («*+ i)y«=o,

**£**{+(*»+ l)f
•"

dxu+ ~ V r //r»M 1 V Vr»dx*1 * 1 'dxn
=<>.

Ex. 3. When the general valup of y„ cannot be obtained we may some-

times find its valile for #=0 as follows.

Suppose • y=(sinh~ 1
jr)

2
.

itere yi= 2 sinh-1^/ Jl+ar (1)

therefore ( 1 +x?)yi = 4y,

whence differentiating and dividing by 2
tyj

(l+^a+^1^=3 (2)
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Differentiating n times by Leibnitz’s Theorem

(1 +a?)yn+i+2nxya+ -

L+n(n-\)yn

+ *y«+i+ ny„=

0

or (1 ±r‘)y„+i+(2n+ l).iy„+,+ma
yM =0.

Putting r=0 we have (y„+a)o= - n
2
(y„) : (3)

indicating by suffix zero the value attained upon the vanishing of .r.

Now, when x<=0 we have from the value of y and equations (1) and (2)

(y)o= 0» (Vi)o=0. (j/i)0=2.

Hence equation (3) gives *

.
— (yi)o

~

0/7)o~ =(Va»+i)i)—

0

and (y,)0
=-2s

.2,
,

*

(y„)0= 4s . 22 . 2^

CVfc)o
= - 6a . 42 .

2

a
. 2,

• etc.,

(ya)o=-f - 2* . 4s
. 63

.... (2*- 2)*

= (_l)!.l22*-ip_l)!}2

* Examples.
•

l. If i/~jc2cax find 3. If y=xna* find yn.

± If y-j,~nm tur find yn. 4. If y =.rV
MCsin bx find yn.

5. Prove that the differential equation

( 1 4- * -)y_ 4- ryi =-m2y
is satisfied by y=sinli(/w sinh"1

^.

Prove also that

( 1 + x2
)!/n+ 2+ ( +

1

)xyn

+

1 + (/r - m-)yn= 0,

and fincl the value of yn when a =•()

100. Some Important Symbolic Operations.

It has been proved, Art. 93, that if r be a positive integer,

Dr
(
ai = ar

eax.

Let us define the operation D ~ r to he such that

DrD- ru = u.

Thus D” 1 represents an integration (Art. 79). We shall sup-

pose moreover that no arbitrary co tants are added. »

Now, since
’Dra ~ rcax=

=

DrD - re™,

it follows that D~ reax= a~ reaz.

Hence it is now clear that

JDrcPa^ar x̂ •

for all integral values of r positive or negative. •
%

101. Let f(z) be any function of z capable of expansion in

integer powers of z
,
positive or negative (= EAfZr say, Ar being

independent of z). »
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c

Then f(Dy*=(2A rDr
)e°

x

= ’Z(ATDreax )

= ('EA rar
)eax

=/(«)«“*•

102. Next let y—

t

axX, where X is any function of x.

Then since Ifc™

=

are°*

we have by Leibnitz’s Theoronf

yn=e°*(a»X+ „C
i
a»-'DX+ nC2«>‘--l)2X+ .... +D»X),

which by analogy with the ' Binomial Theorem (Art. 91) may

be written iPe^X— e^-D -

fc g,)
nX.

n being a positive integer.

103. Now let X=(U+df Y,

so «that we may write Y=(D+a)~ nX.

Then Dnea*Y=eax(D+a)nY (Art. 102),

or - D\'ax(D+aynX=eaxX,

and therefore D ~ neaxX=

e

ax
(D+u)~nX. i

Hence in all cases for integral values of n positive or 'negative

' Dne**X=ea*(i>+a)»X.

104. As in Art. 101 we shall have

f(D)eaxX= 2(A rD')e
axX

= KAJYc^X)
‘ =^A,(D+ayX

= eazf(D+ a)X.
K

105. Again D2” mx= (—

m

2
)
““mx,

and therefore l)2r™mx= (—

m

2
)
r ““ mx.

Hfence, as before (Arts. 101 and 104), it will follow that

/(£2
)2mx =/(-m2)2mx

Ex. /ef*
xsm bx dx

=Z)-V*sin bx—e^D+ a)_1sin bx (Art. 103)

„ a —D * *=0-7/“*
;

^

7))sin bx (Art. 105).

_^yCL sin bx-b cos bx K

aA + bl

=

4

w(aa+

6

2)“^sin{bx- tan-1^ (compare Ex. 4, Art.
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106. Successive Differentiation of F{x2
).

[Lemma. If it is an elementary

exercise to show that

n^2k+ 2(w—2&+ 2)n^2*. - 2= n+l-d.2*-

This is left to the student.]

We shall establish inductively^ that

^F(x*)='2nAit(2xy-»F"-\x*)>

cm;
jl

=

o ,

the series continuing until a zero Coefficient occurs; nA0
being

supposed unity, and indices of *F denoting differentiations with

regard to x2
.

'

For differentiating this, tin coefficient of

(2x)nl2k+}F*~k+\x2
)

is n^L2X+ 2(/

?l— 2l£+ 2)nA 2k- 2 ,
i-6. n+l^-2ifc»

by the lemma.

Hence we obtain

=]&+1A»(2x)*+1
- 2^+1-A(*

2
),

so that if the law holds for n differentiations it holds for n+1.
Moreover, the law is obvious for one and for two differentia-

tions. Hence it is true for any positive integral value of n.

Ex. If F(F)=ea3^, then since

Fr(v2)=ar
e
a*\

we obtain

«"V<s»r+“(”
1
pV-w-’+"<^ W*7 2>("-- 3>«-w‘+«to.i

107. Successive Differentiation of F{Jx). »

[Lemma. If
~ “

“——— then will,

nBue+nBit-i-in+k— i. — n+lB'2k-

The verification is left to the student.J

We shall establish inductively that

the summation continuing until a zero coefficient occura; nB0

being supposed unity, and indices of .F denoting differentiations

with regard to */x.
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For differentiating, the coefficient of

is n^2*+ 2(n+^— 1)/A*- 2)

i.e. „+iMu by the lemma.

Hence we obtain

dn+l x-v / I
\n+l+L

no that if the law holds for n differentiations it holds for « + 1.

Moreover the law is obvious for one or two differentiations.

Hence it is proved true for any 'positive integral value of ??.

Ex. Prove that •

d" V‘vr {n+r-l)l l
\

(Lr

'

\2 sjx) -Z-tr-Q y V rl(>i-r- 1) ! (2't*/.i)
r
J

9 ' [Math. Tiupos, 18S6.1

108. Function of a Function.

A general expression ‘•for the nth differential coefficient of a

function of a function will be found in Chapter V.

109. Note on Partial Fractions.

Since a number of examples on success] \ e differentiation and on inte-

gration depend on the ability of the student to put eeitain fiactional

forms into partial fractions, we give the methods to be
j
misued in a short

note

.

Let be the fraction which is to be resoh ed into its partial fractions.

J. If f(x) be not already of lower degree than the denominator, ?/v» can

divide out until the numerator of the remaining fraction is of tower degree:

.r
2_ _ i ,

_;L -2 _e9‘

(»-ix*-a) (>- iX-^-2)'

Tlence we shall consider only the case in which /(a) is of lower degree

than *l>(x).

2. If <£(#) contain a single factor (pc - a), not repeated, we proceed thus:

. suppose <f>(x)— (x - a) ^(.r),

aid let A + *(?>
(x -a)y(x) x— a y(#)

A being independent of x .

Hence „ +(x-a)2ff.
H*) M*)

This is an identity and therefore true for all values of the variable x ;

put x*=a. Then, since ^(x) does not vanish when x=a (for by hypothesis

ylf(x) dies not contain r-aasa factor), we have

0 • A .
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Hence the rule to find A is, “Put x—a in every portion of the fraction

except in the factor .r - a itself.”

Ex. (i.)

Ex.* (ii.)

.*
— c tr—c 1 — c 1

(,r a^x-b) a — b x-a^b—a x—b'

x*+px+q_ _ a2+pa+q 1 b2+pb+q 1

(x-a)(x-bXx--c)~-(a--bXa ~~ r) •v—u(b — c')(b — a) x-b

+ c2+pe+q
_ 1

(r *- a)(c-b) x-~i

x 1 2 3
‘iX ‘ U1 ' }

( r- 1 X.r- 2X-r- 3)

=
2( i- - 1 )7 2(I^3)‘

Ex. (iv.) -
**

....

(r-tfX-r-6)

Here the numerator not being of fowe/* degree than the denominator
,
we

divide the numerator by the denominator. The result will then be

expressible in the form 1+ —^ -p*—~ ,
where xl and B are found as

1 ^2 J2
before and are respectively ,

and .
1 a-b b-a •

3 Suppose the factor (./•-«) in the denominator to be repeated r times

so that <l>(x) -= (V- a)rir(x).

Put u; -a= y.

/C®)^ /(«+;/)

</>(*0 y'M<*+y)'

nr expanding each function by any means in ascending powers of y,

• d0 -PA |.y +-d 2?/
24- . .

.

'/(/*o+ >/+B^+ ...)'

1 >ivide out thus :

—

^o+/?iy +..-l Ao+J^-p... jft+fty+ftyM-...,

k.
et°M

md let the division be continued until y
r is a factor of the remainder

Let the remainder be y
r
X{y) *

O0 , G ft

y
r y'~ x

y
r

Then

Hence the fraction—
v
°-p- 4- VJ

.+ ...+^
r“l+
y \K«+2/)

=_c» .
<h

,

® (*r - a)r {x — a)r_I (
- a)r

~ 2

,
C,_1 X(^- o)

\s-a #*)
"

Hence the partial fractions corresponding to the factor (^— a)r are deter-

mined by a long division sum.
#2, J

Ex. Take

Put
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Hence the fraction = (i+.y)
a

y*(2+y)'

2+y)i+?y+.ys(i+ly+iy!! -

ly+iy1

-iv3
Therefore the fraction

f

= 1 +.3 .1 _ _J_
2/ 4/T8y <3

(
2 +?/)

J + 3
. J_

2(;r— l)
3~4(.r— l)3 '

8

(j’— l; 8(.r+l)'

4. If a factor, such as ,r
! +<r.r+&, which is not resolvable into real

linear factors occur in the denominator, the form of the corresponding
j/i

/Jp
-1

#

partial fraction is . For instance, if the expression be
2

*
1

(.r - a)(jr ~ b)\^+

a

a
X-*“+ 6-)-

the proper assumption for the form in jjartial fractions would be

• A B C Ito+IS Fx+G Hx+K
x- a+x- b

+
(x- by

+
.r-+ a1 + xl

-f b*
+
(x2 -f b2Y

where A, D, and C can be found according to the preceding methods, and

on reduction to a common denominator we can, by equating coefficients

of like powers in the two numerators, find the remaining letteis l)
f
E, Fy

G
, //, K. Variations upon these methods will suggest themselves to the

student.

EXAMPLES.

If y = tail”1#2
,
find y2

.

2. If y= x2\ogx, find y.A.

3. If 7/ = xeax
y
find y3.

4. If y = jc
w

,
find yr, distinguishing thb cases in which r < ,

=
or > n

;

supposing n to be a positive integer.
,

5 If y =A sin mx + B cos wx, provo that y2 +m2y= 0.

6. If y = A e
mx+ Be~mx

i
provo that y2

- mhj = 0. .

7. If y= ax sin x, prove thaft x2
y2
- 2xy

l + (x2+ 2)y ~ 0.

8. If y cos(log as), prove that x2y2 + xy
x + y = Q.

9/ If y = ax"*1 + bx~n, provo that x2
y2 = n(n + 1 )y.

10^ If y~2=l + 2N/2cos2a?, prove that y2 =*y(3y
2 + l){7y2 - 1).

#
*

, [Oxford, 1889.]
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11. lfy = x log—
,
prove that a?y« = (y - *w,)2.

a + ox

12. If y» sin x prove 4^-°.°® x = 105 sin 4as.

dyz

13. «Find the nth
differential coefficient of

e
ax{a2x2 - 2max + n(n +1)}.

14. If u - sin wr + cos nx
,
show that

ur — n
r
{ 1 + ( — lY sin 2nx}*.

[Oxford, 1890.]

[I. C. S.]

[I. C. ft]

15. If y ~ sin
~ lx

9
prove that (1 - x2

)^2 - xyf - 0
;
also that

(1 - ~ (2n + l)xyn+1 -rfyn = 0.

16. Ify = -d(£C+ Jx2 + a2
)
n + B(x + Jx2 4- J)“*

f

then will (a2 + o2
)yw+a + (2m + 1 )acym+1 + (m2 - w2

)y,n - 0.

1-1 .

17. If y
m + y

m = 2a-, prove that,

(«
2 - IK+j « (2« * l)ay„+ i 4- (n2 - wi%n = 0.

18. If y == <r
x cos a?, prove that y± + 4y — 0.

21. If
2/= (u3

w, -aw)“ l
, find 2/„, w being a positive integer.

22. If y-xnlogx, find yu.

23. If 7/ = (l + x + x2 + x i)~ 1 and 0= cot“lr, show that yM is

£(- l)
?
Vi !sin

nfl 0{sin(?i + 1)0- cos(?i + l)0 + (sin0 cos 0)r"~1
}.

[Math. Tripos.]

24. If y = 6
tan * - % + + a

2
x2 + . . ., show that

#

(i ) (1 +a%2 + (2* - l)y
x - 0 ;

(ii.) (1 + a%)1+2 + {2(w + 1)* - 1 }y„+1 + n(n + l)yn -- 0

(iii.) (

n

+ 2)rt„+„ + na„ = an+1. ,

The last equation is to be found by substituting the series for y in

equation (i.) and equating the coefficient of xn to zero.

25. If y
- .in(m sin

_1
a,) = o# + ax

x + «_
• 2 H . .

. ,
show that

* (i.) (1 —x‘i)y2=xyl
- m2y

;

(ii.) (1 -a%w+s ~(2n+l)xyn+1 - (n2 - m2
)yn= 0

;

and (iii.) (n^ l)(n + 2)ff

,

l+2 = (n2 m2)a„. ,

-1

26. If e
a *“ ** a

0 + a
x
x + a

2
x2 + .•

. ,
prove

(n + 1)(» + 2)atHl2 -= (n2 + a2)an.

27. If (sin
-1
®)

2— a0+ cijX + + aye*+ ..
. , show that

(n + !)(« + 2)aB+2 = n\. •
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28. If u
9
v, to do functions of t, and if suffixes denote differentia-

tions with regard to t, prove that

uv vv wx
11 uv vv wx

w 2’ V2* ^2 U* Vp u>
2

W
3 , v3 ,

W>3 u
4,
v4 , tv

4
[Coll. Exam.]

29. If * be differentiated i times, the denominator of the
er — 1 r

result will be (s*-l)l+1
,
and the sum of the coefficients of the

several powers of e* in the numerator will be (
- 1)*1 . 2 . 3 ... i.

[Caius Coll.]

30. Prove that
*

dnu d?uv d?~ l / dv\ n(n- 1) , 1Nn d"v

s)+-l 2, TH"*?£•)- - H 1 *4*

31. Show that if x - cot y
« dr* xn

,J

dx11
i +

= n ! sin y ^
sin y ~ y sin + sin 3y

[Oxford, 1890.]

32. Prove that if ac > b2

d? b + cx

doc
n a + 2bx + cx2

/ 1 \n„ i f C n
. -i \j -iCLC— b2*"

1

= (
- l)

n
«! f- —-1 \ » cosf(n + ljtan_1

“c

\a + 2bx + cx2/ L 6 + cx

[London, 1890.]

33. Show that tan^^sin mx = tanh my . cos mx
;

[Oxford, 1888.]

io < tan" 1

^?/
^sin mx~ tanh^my . cos mx

;

d gd^y^^sin mx — gd~ 2(my)cos mx.

34. Prove

also <

and

3%. Prove

[Gregory’s Examples.]

35. Prove that if x + y = 1

- »i (y" - + .cy-**2-—)*

t
[Murphy, Electricity.]

36. Prove that t

* log «C + *(log *)
2
+

jjj|

^.Mlog*)9
} +

!̂(^.)

2

{a\(
,°g*)4}

+ ... to n+ 1 terms =(^(X)V+’(log*r 1
}.

«. [Math. Tripos, 1889.]
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37. Find the nth differential coefficients of sin x2 and cos a,
2

38. Establish Rodrigues' Theorem* that if n be a positi^B integer

sin nx=—

-

n
- jr) (

sin xf
n ' 1

-

1 . 3.

5

... (2n- i)\sma! dx) v

39.

* Prove that

dn
. , 1.3.5... 2^-3 r ^”7 *

where r - _ /1-sV
.i)(2n-5). (2»» - 2& - 1 ) \1 + ay

’

• [Fitrxbi ]

40. Iff{x) = a
0 + + a

2
a;
2 + ...

-J-

,

prove that

IV, + 2"aiih ... +r"«r+ ... = •

41. If </>(w) be a rational algebraic function of n, prove that

<f>(l)x + </>(2)a 2 + + </>(n) z" = <f>(x^r—i^L. • »

42. lfj{x) can be expanded in positive integral powers of x, prove

that

J\D){uv) - uf{D)v + Duf(D)v+
D
£f"(D)v .

D̂
f"(D)v + .. .

43. Show that the Bessel's Function Jn(x) (Ex. 125, Chap. III.)

satisfies the differential equation

d2u 1 du

dx2 x dx

44.

Prove that Legendre's function of the nth order, viz
,

*

W-r-nsZl'-V
satisfies the equation

and may be expressed as

(°) + .CX-1
*’ .+ V

where » u==x + 1 and vsx x;

m - 1 ) +h'CSWW - 1 )*

+ ^c«G^-\x*-\y + ....

A S
» »

* M. Fronot has pointed out {Fecueil d'Excrcices) that this result which is

usually ascribed to Jacobi and known by his name ^being give) by him in Crettes

Journal) had been previously published by Rodrigues.



CHAPTER V.

EXPANSIONS.
t

110. The student will have already met with several

expansions of given explicit functions in ascending intcgial

powers of the independent variable; for example, those for

(w+a)n, ex,
log(l+®), tan -1

®, sin®, cos®, which occur in

ordinary Algebra and Trigonometry.
*

The principal methods of development in common use may
be briefly classified as follows

:

I
;
By purely Algebraical or Trigonometrical processes.

II. By Taylor’s or Maclaurin’s Theorems.

III. By Differentiation or Integration of a known series, or

equivalent process.

IV. By the use of a differential equation.

These methods we proceed to explain and exemplify.

111. Method I. Algebraic and Trigonometrical Methods.

Ex. 1. Find the first three terms of the expansion of log sec x in ascend-

ing powers ob-jc.

By Trigonometry
a?

.
at a?

,cos®= sl
2!
+

4! 6!
+ “*

Hence

where

log sec.r= - log cos x= - log(l - s),

_x2 at at
4
-2i~4!

+6!"‘" 5

and expanding log(l -z) by the logarithmic theorem we obtain

*3 * *

log sec

ra? a* at* 1 ,
Ip7* tf

4
,

~12

S

L2! 4!
+

6!
,

,,,

J
+
2L2!‘’4!

+ ,

*'J

78
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lienee

3^ . jfl

“ 2"24+ 720"’”

+**-*++
8 48

+ *“

afi

+S—

•

5

^-'-T+S+S-
Ex. 2. Expand cos3# in powers of jr.

Since 4 cos3#= cos 3#+ 3 cos x

3V 3¥- 1 "
2!

+
4!

"
• + (-!)'

(2n)\

>r
2

n

we obtain

Similai ly

cos3x=i| (1 +3)-(3a+3)£+(3«+3)£ - ...

+(
_*1)n(3-+ 3)

(g!

+
...J.

^ 1 {(3
3 ~

3)gj
- O’ - 3)J^+(3

T

+(-!)’%
02.-1 _ g

(^- 1 )!

Ex. 3. Expand tan# in powers of x as far as the term involving ur\

Since tan a —
X
-3l

+
5l-

i
1 rJ

1 + -
2s 4!

*

wo may by actual division show that

^,3 2
tan#=#+

3
+

1^#
6 +...

Ex. 4. Expand J{log(l+#))2 in powers of x.

Since (1 +#)* = ^ l0» (l+\
wo have, by expanding each side of this identity

,

i
Xy- 2Xyr_?W ...

s 1 +ylog(l +^)+2j{log (1 +tf)}
3+ ...

Hence, equating coefficients of y
3
,

'
,

m^/,. Mj ** X+2 . ,
1 .*2 + 2. 3+3. 1 . , .

J{log(l +*)}’=2j - -g]-*
s+

4|
"«*Je|c.,

a series which may be written in the’form

^-(i+i)^+<i+i+i)?-a+ia-Hi)^+.
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1. Prove

2. Prove

3. Prove

4 Prove

6. Prove

6. Prove

Examples.

cosh*Vc= 1 +—
^
+ «(3n - 2)^. .

.

, Bin #•log—

. sinh.a?
X°*-

X
- =6

log x cot x~ -

tan”1
.

—
6 ” 180*’

’

x2
Jl
A

“
18fT

*2

- 7
r*

3 90

log = _^+-3
*4 .

3^9Q
231

a Prove log(l -x+x2)- -x+X
C)
+<+'

# 3 ' 9Q 5.7.9"
7. Expand sinli3# and cosh3

#, giving the general term in each case.

,

x2
„
2.T3

.
x4 .r° #T

.

5
~ 3

9. Expand log(l +#V) as far as the term containing x *

•10. Expand in powers of a\

n-xPzl! / v - -i 2‘r

7
+ 8-

(a) tan"
q+fa

(c) sin"

,i n/1+j^~ 1

.r
(6) tan

11. ^rovethat

riog (i+^r. ^ p ^+i
, p

r! r!
,(l

(r+l)!+M1lr+2)!

((f) cos
-

X+ J
“V

#r+3
-r+sft(

/
.+ 3)j

+ —.
(r+l)! r+1 \r+ 2)!

where ,./** denotes the sum of all products k at a time of the first r natural

numbers.

ll£. Method II. Taylor's and Maclaurin’s Theorems.

It has been discovered that the Binomial, Exponential, and

other well-known expansions are all particular cases of one

general theorem known as Taylor’s Theorem, which has for its

object the expansion off(x+ h) in ascending integral positive

powers of h, f[x) being a function of x of any form whatever.

t , It will be found that such an expansion is not always possible,

but we reserve for later articles a rigorous discussion of the

limitations of the theorem. *

113. The theorem referred to is that under certain circum-

stances f(<c
l+h) =f(x)+hf(xy^f(x)+^f"(x)+...

+g/»(*)+‘... to infinity

an expansion off(x+h) in powers of h.
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This result was first published by Taylor in 1715, in his

“ Methodus Incrementorum Directa et Inversa.” In 1717

Stirling pointed out another form of Taylor’s Theorem, viz

,

m =/(o)+x/(o)+Jr(o)+^/"(o)+ ...

rp7l •

+ -rf*(0)+... to infinity,
n\

which is easily deducible from Taylor's Series by writing

0 for x and a: for h; the meaning offr
(fi)

being that f(x) is to

be differentiated r times with respect to xt and then a? is to be

put equal to zero in the result

The latter series gives a method of expanding any function

of x in positive integral powers of x. Being a form of Taylor’s

Theorem it is subject to tbe pame limitations. It is generally

known as Maclaurins Theorem, though its publication* by
Maclaurin was not made until twenty-five years after its first

discovery by Stirling.

114. Taylors Theorem also deduciblefrom Maclaurin9

s.

It ha3 been shown that Maclaurin’s series is deducible from

Taylor’s form. Taylor’s series is also deducible from Maclaui in’s.

For, let f(x) = F(x+ y),

then f\x)= F\x+ y), etc.,

so th^t /(0) = F(y), f'(0)= F\y)f /"(0)= F\y)
t
etc.

Hence MaclAurin’s’Theorem

/(*)=/(o)+®/'(o)+grfo)+... •

becomes F{y +*) = F(y) +xF\y)+^F\y) + ...,

which is Taylor’s form. *

Taylor’s Theorem.

115# Prop. To prove that, iffj'r+h
)
can be expanded in a

convergent series of positivejintegral powers of hr that ex-

pansion is,
9

*

Put a?-f A=sX ;
then since x %and h are independent

9

dX ,

wr-L
B.D.C F
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Hence

Similarly

df(X) dfiX) dX_ f(X)
djr

=
~dx-'dF~HA)-

Now, assuming the possibility of such an expansion, let

h2 w
f(x+h)=A0

+A
1
h+A

2
~-+A

zQ!+ --myVwT"/“ ” 33!
' ** M V

where ^1 0 ,
^ 1# .d

2 , ... are functions of x alone
,
rwrt containing

h, and are to be determined.

Differentiating with regard to h wo have, by the preceding

work, /'(a-+A)=^*t^ +^
4|, + (2)

Differentiating again *

. />+/,)=^+-A) =

7.2 7.3

+ +^ 5«| + •••» •••(3)

Put /< — 0, anil we have at once from (1), (2), (3), ...

^0 =/(*)• =/'(«•). ^2 =/'(*)• et0-» •••

Substituting these values in (1)

f(x+h) -fix) +hf'(x)+?f(x)+. .
.

+*/'(/>+ . .

.

11(5. This theorem may be written

/(*+/, ) = {l +^.+2,(^) +
f3|(,fj

+-..}/(•«) -

and by analogy of form with the exponential theorem the

operator may*be represented shortly by

4
e dx or e

Tims f(x+h) = e
hD
f(x ).

Stirling's or Maclaurin’s* Theorem.

117 Prop. To prove that if f(x) can be expanded in a

convergent series of positive integral powers of x, that ex-

pansion is c
1

M=4/(())+^/(o)+^r(o)+^r(o)+... to oo.

AssSiming the possibility of such an expansion, let

(1)
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where A0> Av A2, ... , are constants to be determined, not

containing x.

Then differentiating we have

• fXx)
=^i+Afl+A^,+A^+ (2)

f(x)=A 2+Avr+A^+A^+ (3)

eta

Hence putting x= 0 in (1), (2), (3), ... ,»we have

A0 =f(0), A,=X(0)1 A 2 =f"(0), etc

aud substituting these values in (1)

Ax) =m+xf\o)+
x
j]
f(o)+^f"(o)+...+?m+ ...

118. It will be noticed that in the above proofs there is

nothing to indicate in what cases tl^e expansions assumed in

the equations numbered (1) in Arts. 115, 117 are illegitimate,

and we shall have to refer the student to Arts. 130 to 142 for

a fuller and more rigorous discussion. ,

LI 9. It is important before proceeding further, that the

student should satisfy himself that the well-known expansions

of such functions as (x+h)n
,
c
x

,
sin a;, etc

,
aie really all included

in thd general results of Arts. 115, 117. •

For example, if f(x)— -r", f{x+ /*)— ( / + //)*, f (j?) —w rw_1,

f'(x)= n(n - l)?w
~ 2

,
etc. Hence Taylor’s Theorem,

f{r+h)=f(r)+hf{x)+
h*

{

f'{x)+ ,

gives the binomial expansion

(r+A)"= i
n+nhAn “ 1+

/z ^ /gp^A2
.r

,|“ 2+ ..

Again, suppose then f\js) -e*, /"( etc.,

therefore /(0)— l,*/'(0)=l,/''f ' = 1, etc

Hence Maclaurin’s Theorem,

/(^)=/(0)+r/'(0)t^/"(0)+

gives e*=I + r+§!+?+ " *

the result known as the Exponential Theorem.

120. We append a few examples which admit of expansion,

and to which therefore the results of1 Arts. 115, 117 apply.
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Examples.

Prove the following results :

—

. 3? #5

1. siiiar_;r_
3!
+__....

± log(l +*)=*_^+^_ ....

3. tan-*x =«--+^-....
3
t

6

1. <-*eos.r=l +24cos^ • .r+2*cos
5

^ + 2 Jco8-^ ^

H

4 n\ c

, , 22#* 24#® 20#12
,

[uirwi), nvw>.

(5. log(l+e*)=iog2+ia?+^---- .... «

. « ,
iy^ .

7 e*
ln^l4-^+^2 - J#

4 - ....

K sin(#-fA)=sin#+ A cos,r — ^
sin# cos #+ ....

• .. . i // # A2 1 4- ?.y2 A3
y. siir~

1
(#4-A)= sin- 1

./ 4—=_ ~\ H - -— 4-....
Vi-#2 (l-**)l 2! (l-#2)^!

1 ( ). log sin(# 4- A)= log sin # 4-A cot x - cosec2# +
C
?
9
f?+ . . .

.

2 3 am3#

1 1 . sec-1(# 4- A)— sec _l#+
•2#2 -l A2

+
#\/#a — 1 #2(#3 — 1)£2!

Method III.

121. Expansion by Differentiation or Integration of a

known aeries or equivalent process .

The method of treatment is indicated in the follow mg examples :

Htf. 1. ,To expand tan~ lx in powers of x, assuming x to be numerically

less than unity. Gregorys Series.*

Suppose /(#)= tan -1# -cr0 4* «i#

+

a^c2 4*a^e3 4- . .
.

,

then /'(#)-=^^A^
2= ai + 2o2^+3aar

2 4-4(7
4#3+ ... ;

also* (1 4-#2)~
1= 1 -#2+#4 -#a+ ...

.

Hence, comparing these expansions, we have

(Xg= = ctg»^ == ... -=0,

and . <ti =* 1, Sos^&jl„5%— 1, etc.

Also « a0==tan“*oSW ;

tan

+

^
-?* + .... .

«
3 5 '

* Comm£rcium Epistolioum, p. 98.

therefore
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This result may be obtained immediately by integration of the M-ries

for j viz.,

the constant a0 being determined as before.

Ex. 2. To expand *in~xx.

Suppose /(a?)=sm”1^=a0+aJ^+a^r2 +<»9z
a +... ;

therefore f(x)= — c^ + 2a^+3aJjr
a+4a4*3+. .

vl-r1

Unt jJ—-l + £*s+l"V+...»
Jl-x* 2.4.

Hence, comparing these series, wd have

» Oo= =

a

0= . =0,

1 3
and ai = 1, 3cfo=$, 6a6 -r

*
*

...

.

#
2. 4

Also a0 =sin
_10 r=mr.

t

! leiife

and, as before, this might have been obtaiAed immediately by integration

of the expansion of
^

1—

j

Ex. 3. Again, if a known series be given, we can obtain ottfers from it

by differentiation.

For example, borrowing the series for (sin~\r)2 established in Ex. 2 of

tb^p^jj’Atft., viz.

—

• i/*-i\2 ^ (
2.4^

,
2.4.6.^

,

j(81„^=- +34+_ 6+3 5 7
-+..

,

§

we obtain at once by differentiation

—+?*•+?-!*•+?••MW
*/l -a?2 3.6 3.5.7

Examples.

1. Prove log(j;+Vl+«*)ssinh” ,j*- jt— i •
,*6— ....

2 o * . 4 o

2. Prove taiih“ l«ff~tf+f*+^
ft

+..
u O '

Expand examples 3 to 9 in ascending integral powers of x.

3. tan^r+tanh ~\r. 9

4- tan
" ,

i-> 8iuh
‘i-y V

6. tan- 1 ^r^+tanh-i3-*-^.
1 — 3a?2^ l + 3tf2

6. tair 1

\M—

r

2
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sec-1
1

l -&r2
‘

8. sinh* 1(3ar+4^3).

9.

V 1 -.ra

10.

Deduce from Ex. 3, Art. 121,

(1 -x2)*sin- ,4?=a'
* 2^4 .r7

376' 7

And hence by putting #=sin 6

\

prove

0 cot 0~ 1 - 22??- 1

2

. f
iu40 - *1 * *in^_

3 3 5
4

3.5 7

[Quarterly Journal, vol. vi J

11. Given that
t

sin log(l+*)= ^tf+^*tfa+^+ . +^jM+...

.
• coslog(l+*)=l +£jV+|j>+^*»+ . + "v”+ ,

calculate the first eight coefiScjents of each expansion

[Math. Tripos, 1887.

J

1 2. Prove that when x is between - ? and 4-7
2 ^2!

cos x -^ cos 3.r +^ cos 5.r - . . to infinity

[Math. Tripos, 1875.]

Method IV.—By the Formationj^f a Differential

EquationJ^t

122. This method may often be Snployed with advantage.

Assume a series for the expansion

. (say aQ+a l
x+a$?+ ).

Then form a differential equation in the way indicated in

several of the examples in the preceding chapter. Substitute

the series in the differential equation and equate the coefficients

of like powers of x on each side of the equation. We shall

thus obtain sufficient equations to find all the coefficients

except one or twd of the first* which may be easily obtained

from the valu^ of/(0) and /'(O).*

* ProfeBBor Williamson has pointed out that some historical interest attaches to

this method, as having probably been employed by Newton in hiB expansion of

sin(»i sin" 1*) and othe^ expressions.
, #
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Ex. 1. To apply this method to the expansion of (l +x)n.

Let y=(1 +^)n—

a

0+ax^+a2^3+ aj.r3 4- (1)

Then yi=w(l 4*#)w
“1 or (1 +x)yx =ny (2)

But yi= ai 4-2^ 4* 3ajar
3 4- (3)

Therefore substituting for (1) and (3) in the differential equation (2)

(1 -Ki?Xai+ + 303^^4- . . .) se n(a0+a& 4- • • • •)

Hence, comparing coefficients

«i =na0,
*

2o2+ai=^nalt

3a$+2a2
=i na2, etc.,

#

1

and by putting #=0 in eqyation (1),

00= L
* a!=-«,

a2=—&,= ~
2
—

,

• etc.,

a " ^r_+1 O, 1= «^-1)_
(nj-r+1)

r r!

(
1+*)"~1 +»»+'*("whence

Ex. 2. Let y-=/(x)=(sin-1
a?)

2
.

y.,2

(l-^)?/i2=4y
Differentiating, and dividing by 2yi, we have

(1 -^2
)^2

==^i+ 2 *—0 )

Now, let y=a0+a1j?+a2^
2+ - + 0n^

n 4-a„+i^n+l+an+!>^+2+...

,

tlierefore yi =ai 4- %a'F+ . 4-tta„#"“ l
4- (w 4- l)«n+i^n+ (n+ 2)aw+2ff*

+1 4- .
. ,

and

y2= 2a2 4- .. 4-»(»- l)a*^“*+(» 4-l)wan+ i^
w " 1+ (w4-2)(»4-l)a*+:^4-.. .

Picking out the coefficient of xn in the equation {which may be done

without actual substitution) we have

(n+ 2)(n+l)an+2 -nrrt -\)an *=nan , *

• ,,a

therefore «n+a= - (2)a"+a=
(»+ iX»+

_
2)“”'

Now, ^0—f(P)=(sin_10)2,

and if we consider sin"1# to be the smallest positive angle whose sine is &\

sin“ l0=0, *

Hence a0,=0.

Again, «i =/r

(0)^= 2 sin“ l0 . -y-*-_^=0,«i=/(0)r= 28in
“ l
°--T: ~=0,
vl —0
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Hence, from equation (2), a3,
a6,

a7, ... ,
are each=0,

, 22 22 22a
!Hl<l a4=0 ,as=

374
=

4!
’

4* 22 . 4* 2s . 4* 0
a<, ~576' a4

~3.4"^T6~ ~6!
' 2’

etc. = etc. *

therefore (sin -'*)*=^+^2^+ +
2* 1 + . .

.

A different method of proceeding fa indicated in the following example.

r.2 r3
Ex. 3. Let sin(»2 siq^ 1#)

=

a0 4- a2x+ 0*^4- + ( 1

)

Then yx= cosfm sin” Itj)-7=S=^-,
Vl-J'2

whence (1 1 -y2
).

Differentiating again, and dividing by, 2^, we have

(1 -J?2)y2-^i+m2y=0 (2)

Differentiating this n times by Leibnitz’s Theorem

(1 - x2
)yn+

2

-(2/1+ 1 )ry„+i + (m2 - n2
)yn=0 (3)

Now,
<*o
=(y)x=o

=

sin(m sin” 3
0)= 0,

(assuming that sin-1^ is the smallest positive angle whose sine is x)

«i=(yi)*-o=wi,

etc.

rt«= (y/»)*= 0.

lienee, putting ^*=0 in equation (3),

o an+2 - — (ma — n2)a„.

lienee a4,
a6,

a8, ,
each= 0,

and a3
— - (w2 - l2)^= - wifm2 -

1

2
),

ab
~ - (m2 -

3

2)a3=m(m2 - l
2)(m2 -

3

2
),

tq— - (7/i
2 - 52)as= - wi(m2 -

1

2\m2- 32)(m2 - 52
),

etc.

Whence

«„-»*)

=

1

0 3! 5!

m(m2- l 2)(m2- 32)(m2 -b*)„7jL_
7!

The corresponding series for cos(m sin
-1
#) is

2! 4K' o!

If we write j?=fcin 0 these senes become

sinai0=m8in sin^-etc.,

oo.*.0=l **
^

2*){
!^-£)8in,0+ett.

2! 41 0!
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/
Ex. 4. Expressions of the form (tan“ 1

a?>p/p! may he easily expanded as

follows :

Taking tan-1* to lie between
*
and we have

4 4

.
tan->*=*-£+£-....

We may therefore evidently assume expansions of the form

y= (tan-'rf/p !

=

cyx? - aprJ^+i+ OpUafi+4 - . .

.

^=(tan- ,
a?/

,“1
/(jo -

1 )! - 6
j,+ iJ7

p+ 1+6pf»»p+i

Then yi=<l+A,2)“\

or pa,,**-1 - (p+ 2)ap+2*
p+1+(p+ 4)ap+ Ja^

+S -
.

.

== (1 - x2+ x* -
. tXVi*"”

1 - 6p+i«
p+I + . .

. ),

whence, equating coefficients,

pt/p—bp-1, ,

(jo+ 2)ap+j=6p.i-^6J,+ i,

( P+ 4)ap+4 *= ^>-1+ ^p+i+ /,

etc.,

and the law which connects the several coefficients is obvious.

Thus starting with Gregorie’s Series we successively deduce

etc.

These results have been communicated to me by Professor Anglin of

Queen’s College, Cork.
,

Examples.
t

1. Apply this method to find the known expansions of

o* log(l +x), sm j •, tan~lr.

2. If y^mn- 1x=a0+a}
r+a2.r

2+ajri+ ...

,

prove that ^=_£_ )aB)

and in this manner deduce the expansion ''yen in Ex. 2, Art. 121.

3. If eP*n
~ l*^a0+aiX+a&

2 +atffi+... 1
prove

(1) ^+j =
(»IiXkT2)“”

; 1

(2) ,+^f+^W^2-V

a(oa4 I)(g2+3a
)rS ,r

5!
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(3) Deduce from (2), by expanding the left side according to the

exponential theorem and equating the coefficients of a
,
a2

, ... the

series for sin-1**, (sin
-1
#)2

, . .
. ,
and show that if in the development of

<8in^)*
yiZ)

r*
,
1 x>

,
1.3 .r

5
,

l
+ 2’ 3

+ 274- 5
+ -

every number which occurs be increased by unity, the result, viz.,

x% 2 #* 2. 4 #®

3 4 3.5 6

ia equal to <sin‘H2

.

4. Prove that if log*?/— tan ' \r v

(l+a%M= {1 -2(t?-1 )j }y n-i - (n - \){n - 2)?/„- 2.

and hence find the coefficient of .r
6 in the expansion of ?/ by Maclaurin’n

Theorem. r [I. C. S. Exam.J

Tf
(tan -1

#)2 ayr1

21 : 2
•' 4

+
0

prove that a>n - a2n -
1

^

G. If y satisfy the equation - nihj— 0, and if the first and second

terms of its expansion be respectively A + B and {Am -Bm)v, show that

the general term is * A +{-

1

)
kB}™^

.

lienee show that

y^Ae^+Be-™

7.

If y satisfy the differential equation

yi+Ztyi + {k2+b*)y=i\

and the first terms of the expansion of y aie

x-k.+r-'b.

continue the expansion.

8.

If sin -1 i
• ,

(sin
-1

#)’
siii

-H =2 and v
-

.
-

n 3! i0show that a„ 4 2= nra t +K
Hence establish the expansion

• (sin“l#y_l
.
Ij3/1 1\£

, LAl’V 1
4-

1 + l Y7

4.

31 2 3
+
2.4\12+ 3V6 +

2 . 4 . 6\li+ 3J+5V 7
+ *‘”

_ x sinh-1# 2 .2.4.,

9.

Prove (a) " *

/7 . (sinh-1#)2 #2 2 #* 2 . 4 r6

<*>
2! “3 4

+3r0 6-""

(c)log(l+V2)=lf2-3+J—4- J---

•<*> [anglin- ]

1(C Establish the expansion
'

x* . I 1.1 1.2,1 1.2.3.^=l+ l

8 3
+ 3' 3.6

+ 4' 3.5.7
+ ”‘ [Anglin.]
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Continuity.

1 23. Def. A function is said to be continuous between

any two values a, b of the independent variable involved if, as

that variable is made to assume successively all intermediate

values from a to 6 the function does not suddenly change its

value ,
but is such that its Cartesian graph [y= 0a?] can be

described by the motion of a particle travelling along it from

the point (a, 0a) to the point (6, 0&) without moving off the

curve. *

•

124. Trace the curve y = </>x between the ordinates AL(x=a)
and BM(x= b). Theq if we find that as x increases through

some value, as ON (Fig. 14), the ordinate <j>x suddenly changes

from NP to KQ without going through the intermediate

values, the function is said to be discbntinuous for the v^lue

s= ON of the independent variable.

Fig. 14.

Fig. 16.

126. Similarly, we may represent geometrically the dis-
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continuity of a differential coefficient. For^ represents the

tangent of the angle which the tangent line to the curve makes

with the axis of x. If, therefore, as the point P travels along

the curve the tangent suddenly changes its position '(as, for

example, from PT to PT in Fig. 15), without going through

the intermediate positions

^

there is a discontinuity in the

value of
ax «

126. Prop. If any function of x, say <px, vanish when x=a
and when x= b and is finite and continuous, as also its first

differential coefficient <f>x between thosti values, then will ffx

vanish for at least one intermediate value.

For if ffx were always positive or always negative between

x= a and x= b, <px would be continually increasing or con-

tinually decreasing between those values (Art. 42) and there-

fore could not vanish for both x = a and x= b, which would be

contrary to the hypothesis. Hence <j>'x must change sign and

therefore vanish for some value of x intermediate between

x=a and x=b.

127. The same thing is obvious at once from a figure. For,

suppose the curve y=±<f>x cuts the axis at A (x—a, y=0) and
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B(x=b, y«0), then it is obvious (Fig. 16) that if the curve

y= and the inclination of its tangent be continuous between

A and B,
the tangent line must be parallel to the axis of x

at some intermediate point P
It is also clear that the tangent may be parallel to the axis

of x at other points between A and B besides P as in Fig. 17,

so that it does not follow that <j>x vanishes only once betweeu

two contiguous roots of <f>x= 0.

128. The same proposition is thus enunciated in books on

Theory of Equations :
“ A real root of the equation <{>x—0 lies

between every adjacent two of the real roots of the equation

<px= 0”; and is known as Rolled Theorem.

*

Examples. / •

1 Show that if a rationaf integral function of x vanish for n values

between given limits, its first and second differential coefficients will

vanish for at least (n- 1) and (n -2) values of x respectively between the

same limits. Illustrate these results geometrically.
[I. C. S. Exam.]

2. Prove that no more than one root of an equation f(x)—0 can lie

between any adjacent two of the roots of the equation /'(#)= 0.

3. Show that the following expressions are positive for all positive

values of x •

* (i.) (r- l)e*+l
;

(ii.) {x-fytf+x+Z ;

(m) (.r-3)e*+'2+2r+3; »

(iv.) x — log( 1 x).

[N.B.—By Art 42, if be positive, y is increasing when x is increas-
(lV

mg Reuce, if y be positive when *•=<>, and if also be positive as x

increases from 0 to oo
,
it follows that y will be positive for all positive

values of x.]

129. There is much difficulty in giving a rigorous direct'

proof of Taylor's Series, as might be^expected from the highly

general character of the result to be/ established* It is found

easier to consider what is left after n terms of Ta/lcvr’s Series

have been taken from f(x+ h). If theform of this remainder

be such that it can be made smaller than any assignable

quantity when sufficient terms of the 'series dire taken, the
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difference between f(x+h) and Taylor's Series for f(x+h)
will be indefinitely small

,
and under these circumstances we

shall be able to assert the truth of the theorem .

130. Lagrange Formula for the remainder after tha first v
terms have been taken from Taylor’s Series.

Theorem.—

I

f f{z) and all its differential coefficients up to

the nth. inclusive be finite Und continuous between the values

z=x and z=x+h of the variable z then will

f(x+h) =/(») +‘hf(x)+ 2
,/V'1+ • • •

where 6 i* some positive proper, fraction.

- * • h2

Let f(x+h)~f(x)+hf'(x)-^
2 |

/"(»)+...

Ln -

1

•

+c*-i5i/
to-H«)+> a>

R being some function of x and h
,
whose form remains to be

discovered.

Consider the function

J\x+z)-f(x)-zf(uC
)-J !

/V)---^_
1 ) !
/n_l(*;-

Z

n]
R=<p(z),

say; then differentiating with regaid to z (kfeeping ^constant),

f(x+z)
«

-m- *m- Zn
- 2

.
2"- J

‘ {»->)'/ W (n-l)\
J

r+n - 3 2n ~ 2

f{x+ Z) - /(*)-.
(n-.S)V ^ <>-2)!

etc., etc., etc.

fn’^X+ z) - zR=<f>v-\z),

fn(x+z) - R=<f>
n
(z).

All the functions (J>(z) f
</>'(z)...'

t <j>
n(z) are finite and con-

tinuous between the values 0 and h of the variable z,
and

evidently <p(0), , <£
n~V0) are all zero. Also from

equation (1) <f>(h) =0. Therefoie by Art. 126,

<f>
(z) = 0 for some Value (h

})
of z between 0 and h

,

<f>" iz) = 0 for some value (A
2)

of z between 0 and hv
•• 4>"'(z)~0 for some value (h &) of z between 0 and h

2, ,

and so on
;
and finally

(a?)=0 for some value (An) of z between 0 and A*. i.
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Thus fn(x+hn)—R= 0.

Now since hn <h„_i<kn _ i ... <h2 <hJ
<h,

we may put h„= 6h where 6 is some positive proper fraction.

Thus R=f»(x+dh).
Nence substituting in equation (1)

+^y-w+t><*+*) »
This method 01 establishing the result is a modification ofone

due to Mr._fTomer$ham Cox (Camb. and Dublin Math. Journal).

131. If then the form of the function f(x) be such that by

making n sufficiently great \Jhe ^expression f1l(x+ 0h) can be

made less than any assignable quantity however small, we can

make the true series for f(x+h) differ by as little as we please

from Taylor's form

f(x)+/</(«)+ 2,/V)+ • • • to 00 •

The above form of the remainder is due to Lagrange,* and

the investigation is spoken of as Lagrange's Theorem on the

Limits of Taylor's Theorem.

132. The corresponding Lagrange formula for the remainder

after n terms of Maclaurin’s Series is obtained by writing 0 for

xn •

./• and x for h and becomes - fn(0x) t

thus giving
m2 mtl — 1 mfl

/« =/(o)+*m+lf(0)+ .

.

.

+

(
,

1)!

/»- i(*)+*

133. The following investigations of an expression for the remainder

are taken, with but lew changes, from Bertrand’s “Traith de Calcul

Differential et IntfcgraL”+

We shall assume that f(z) and all its differential coefficients up to the

zith inclusive are finite and continuous between the values x and x+h of

the variable z. 4 •

Let R denote the remainder after w terms of Taylor’s series have been

taken fromf(x+ h)

;

so that

f{x+h)=/(*)+A/>)+J/W+ I/-W + « *
-0)

« •

t Pages 282-286.Caloul deg Fonotions, p. 88.
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Let x+h—X, hence

AX) -Ax) - *=£.f{X)J2Lz?Vf(x) _ -«=o...(2)

Put a form suggested by the remaining terms of
n\

Taylors series. Consider the function formed by writing z instead of x
throughout the left hand member of equation (2) except in P.

Let <^{z)—

AX) -A*)

-

VW - - - (

Jl'Jf
/-*W

-

C

From equation (2) </>(#)=fOt
and it is evident that <j>(X)= 0.

Also </>(z) and <f)(z) are finite and continuous between these values of the

variable z. Hence </>'(z) vanishes for some value of z intermediate

between z—x and z—X—x+ h, say for 2=x+0h where 0 is a positive

proper fraction.
*

Differentiating equation (3) with rtftpect to z

• <«

whence P~f\z) for that value of z which makes vanish, i.e.

• z—x+ Oh.

Hence P=fn(x+ Oh)

and lt^f\x+0h) (B)

.
nl

134. A different form of the remainder is due to Cauchy.

In equation (2) put It— (X -x)P and proceed as before, then, instead of

equation (4), we shall have

whi<sh \anishes as before for some value of z between z=x and z—X—x+h,
say for z—x+ Oh ; whence

and therefore

“ (n - 1) !

' v

£/*+«*>

•135. Another form is obtained by Sclilomilch and Roche by assuming

a slightly different form for It, viz.,

JjX-xy* 1

r
1

This gives, instead of equation (4),

<#•'(*)= -<^/w+<jr-

*

)pp
’

whence - P Ai^),

and
* ‘

it O^;f^ nx+0^ .

« (»— 1;1«CP+1)

136. The last form includes those of Arts. 133, 134 as particular cases

;

for putting 1 —n it reduces to Lagrange’s result, and putting p=0
it reduces to Cauchy’a
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137. The corresponding forms of remainder for Maclaurin’s Theorem

are obtained by writing 0 for x and x for A, when the three expressions

investigated above become respectively

J/w,
(i - fl)"-1**

(» — 1)!
/"(Ox), and (1 -g)n-»-y

(Jt-l)!(j5+l)
rm.

138. The student should notice the special cases of equation

(2), Art. 130, when »=1, 2, 3, etc., viz.,

f(x+h)=f(x)+hf(x+ OJi),

f(x+h)=f(x)+hf(x)+^fXx+6Jl),

etcr ;

ail that is known with respect to the 6 in each case being that

it is a positive proper fraction .

139. Geometrical Illustration*

It is easy to give a geometrical illustration of the equation

fix -pA) =fix)+hf\x+ 0A).

For let x9 f(x), be the co-ordinates of & point P on the curve

y=f(x), and let x+h, f(x+h) be the co-ordinates of another

point Q, also on the curve. And suppose the curve and the

inclination of the tangent to the curve to the axis of x ’to be

continuous and finite between P and Q ;
draw PM, QN per-

pendicular to OX and PL perpendicular to QN, then

f(x+h) —/(a) _NQ—MP_ LQ_ . Tpo
• h ~ MN ~ pT~™n

Kg. 18.

Also, x+Qh is the abscissa of some point J2
(
on the curve

between P and Q, and f'(x+6h) irf the tangent of the angle

which the tangept line to the cufve at 22 makes with the axis

of x. Hence the assertion that *
*

E.D.C. O
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is equivalent to the obvious geometrical fact that there must
be a point R somewhere between P and Q at which the tangent

to the curve is parallel to the chord PQ.

140. Failure of Taylor’s Theorem.

The cases in which Taylor’s Theorem is said to fail are those

in which it happens

(1) That fix), or one of its differential coefficients, becomes

infinite between the values of the variable considered

;

(2) Or that /(sc), or one of its differential coefficients, becomes

discontinuous between the same values

;

hn
(3) Or that the remainder, —

,

,f
n(x+0h)

f
cannot be made to

n *

vanish in the limit when n is taken sufficiently large,

so that the series does not approach a finite limit.

Ex. If /(#)=*/#,

f(x+h)—slx+h, f(x)=— etc.

Hence Taylor’s Theorem gives

fix+h)=Jx+h=Jx+~rh+...

If, however, we put x=0
,
3-7- becomes infinite, while y/x+h be-

x
comes Jh.

Thus, as we might expect, we fail at the second term to expand y/h in a

series of integral powers of h.

141. In Art. 115 the proof of Taylor’s Theorem is not general,

the assumption being made that a convergent expansion in

ascending positive integral powers of x is possible. The above

akicle shows when this assumption is legitimate.

For any continuous function in which the (p+ 1)^ differ-

ential coefficient is the first to become infinite or<discontinuous

for the value x of the variable, the theorem

f(x+h) =f(x) +hf'(x) +...

+

h*

[
f*{x+6h),

which involves no differential coefficients of higher order than

the p**1
,
i£ rigorously true, although Taylor’s Theorem,

f(x+h) =f(x)+hf(x)+.:.+
J

^i

fp{x)+-^-JP+Hx)+...

fails to furnish us with an intelligible result
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f(x)~(x-a)l,

/'(*)=
2
(*-“)*.

f'(x)-
l
*-(x-a)l, .

and Taylor’s Theorem gives

(#+A-a)M*- «)*+§(* (ar-aji^+l® _L_ £ + ...,

which fails at the fourth term when x=a. *

But Equation 2 of Art. 130 gives thp result

(x+h-a)i=(x - n)$+®(.r - a)^+ 1

f f\(# + 6h-a)\

which, in the case when x=a
9
reduces to

it
o * , ,

_ /,
64

OT * 0~
226

’

and this obeys the only limitation necessary, 'viz., that 0 should be a

positive proper fraction.

142. The remarks made with respect to the failure of Tay-

lor’s Theorem obviously also apply to the particular form of it,

Maclaurin’s Theorem, so that Maclaurin’s Theorem is said to

fail when any of the expressions /(0), f'(0), /"(0), ... become

infinite,
or if there be a discontinuity in the function or any

of its differential coefficients as x passes through the value

zero, or if the remainder does not become ;infinitely

small when n becomes infinitely large, for in this case the

series is divergent and does not tend to any finite limit.

Examples. *

1. Show for what values of x and at what differential coefficient

Taylor’s Theorem will fail if

m
~z (x-djr —

2. Can log# or tan * \J be expanded by Maclaurin’s Theorem in a

series of ascending positive integral powers*>f x ?
*

3. If /(#)=«”*, how does Maclaurin’^ Theorem fail for an’e^pansion in

ascending powers of x? Is fix) continuous as x passes tlft-ough zero ? %

4. If f{x)z=z -iLj, show that there is a discontinuity in
l + ei . * «

passes through zero.

as x
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143. Examples of Expansions by Maclaurin’s Theorem, with

investigation of Remainder after n terms.

1. Let /(a*)=a*,

then /"(r)= a*(logca)
n
, and /"(O)— (log«a)

n
.

Hence the formula
a

SC”

gives

/(^)=/(0)+ x/(0)+
J/'(0)+ . .

.+^1), /-’(O) +

ax=l+x\og<a + + . .
. +~—

i !

(loge«)"”
1 +

*

!

ato(log.a)w.

Now - can mac^ smaller than any assignable quantity by

sufficiently increasing n
; hence the remainder, after n terms of Maclaurin’s

Theorem have been taken, ultimately vanishes when n is taken very

large, and therefore Maclaurin’s Theorem is applicable and gives

o*= 1 +X log/t+^<log.«y+
^(log«,G.)3+ ... to OO .

2. Let /(*)=l°gO +•*'),

m,
riy />)-(->,

Hence >)=0,/'(0)=l,/'(0)== - 1,/"'(0)=2...,

‘ /”(0)= ( — 1 )
n~\n — 1 ) !

.

And the Lagrange-formula for the remainder, after n terms of Maclaurin’s

Series have been subtracted from /(#), viz. 5-/^—\ becomes
n!

(_!).-! / .r \\
7i 'Vi+ftJ

’

and if .r be not greater than 1, and positive,— is a proper fraction,
y 1 4"W

and therefore by making n sufficiently large the above remainder ulti-

mately vanishes, and therefore Maclaurin’s Theorem is applicable and

ar*
,
x* .r

4

log(l+.^=a?-^+
3

+ . to oo

,

gives

where x lies between 0 and 1 inclusive.

It appears that if we consider/(#)— log(l -#) the remainder is

_V-*-YVnll-W
In this form it is not clear that the limit of the remainder i%zero, But

if we choose for this example Cauchy’s form of remainder, Art. 134, it

reduces to *
,

1 .

and if x be positive and less than unity, is a^° le8S tlian unit7> and

therefore - ban be made as small as we like by sufficiently
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increasing n. Hence Maclaurin’s series is applicable and gives

log(l-x) X-*-*-*- ...to ®.

3. Prove smew?=ax-—-+ -...H r-sm +.
• 3! 5! w! 2

remainder after r terms may be expressed as

arxr .

4. Prove cos«*=l- a^ +
a
*f-...+^ co, ’7+ ,

2’ 4! m! 2

lemainder after r terms may be expr^sseef as

ar.c
r

,
8

(
afe+ ?)-

and that the

. ,
and that the

Prove (1 - jc)~
n= 1 + n r+ + . .

.

«(«+!). ..(a +r-i) .
!

*

• (,-1)!

7t(w+ l)...(/i + r- 1) •

+ W (1 - 6jc)"+r
'

(5. Expand and find the remainder after n terms of the expansion of

<''”cos bx. ,

Kk.su

L

is. i +£u.+£!r
6V+?(«--^+....

2! 3!

Remainder )
2

xnePe*co (i(b6x+n tan'^Y
n\ \ a)

1 44. The Rule of Proportional Parts. Interpolation. »

Let us suppose that f(x) is one of those functiqps (such as

log since) whose values have been calculated and tabulated at

small intervals h of the variable xy so that the values of f(x),

f(x -f h), f(x -f 2h). . . may be taken when wanted from the tables

to a certain number of decimal places. It is required *to

make an easy rule to obtain a close approximation for the

hitherto uncalculated value of f(x+k) where k lies between

0 and h.

We shall assume that h

,

and therefore k, is so small that its

square may be rejected. •

Then since
*

/(®+*)=/(*)+A/(a!)+^/
w
(a!)+|r(*+0>) -(1)

and /(*+*)=A*)+W+^A«)+^/
,

'V+^) (2)
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we have on rejection of squares of h and k

f(x+k)-f(x)_k m
J(x+h)-j{x) h K }

which gives f(x+k) in terms of the known quantities, h, k
, f(x)>

f(x+h). This rule is known as the rule of Proportional Parts.

145. Insensibility and Irregularity.

It will be seen that if at any point of the tables f\x) is very

small, the term hf(x) may be so small that the difference between,

the tabulated values oFf(x) andf(x+h) is not perceptible within

the number of decimal places to which the tables are calculated.

In this case the difference f(x+h)—f(x) is said to be insensible

and the rule of proportional parts cannot be applied.

Again if, although h is
f
small, *s ^arffe any point of

the tables, the term } bears to Iho term hf(x) a ratio

which is not necessarily small. In this case the term in h2

cannot be rejected. There is then said to be irregularity in

the tables and the rule of proportional parts does not hold.
«

Ex. Suppose /(#)=log sin #.

Then log sin(#

+

h)= log sin #+

h

cot #
— ^

cosec2#. . .

.

Now when # is very near 90°, cot x is very small,

cosec3#
and when x is near 0° or 90°, ^ ,

i.e. cosec 2x is very large. «

, 2 cot# J

Hence at the 90° end of the tables for log sin# there is insensibility,

whilst at either end of the tables there is irregularity.

20° 30
° 40

°
60
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The accompanying graph of log sin# for values of x lying between

#=0 and #«90° will illustrate the smallness of the differences when the

angle is nearly a right angle, and the very rapidly increasing magnitude

of the differences as the angle decreases to zero.

It yill be seen that the geometrical meaning of Equation 3 of Art. 144,

viz., “ The Rule of Proportional Parts,” is, that the portion of the curve

between the two very adjacent points whose abscissae are x and x+h,
may in general be regarded as straight in interpolation for the value of

f(x+k). *

146. On the Value of 0 in the Equation

f(x+h)=f(x)+hf'(x+eh).
Hitherto all that is known'of 6 is that it is some function

of x and h, less than unity, and positive.

Let its expansion in powers of k be

d=A0+A 1A+fiJt
2-^A sh?+...

A 0> Av A 2
... being functions of x, to be determined.

*

Then expanding both sides of the equation

f(x+h)— f(x)+ hf'(x+ 6k)

fX+hfx+^rx+^rx+^r^+^

=fx+hfx+ 6hJ"x+
Q~f"x+^f’"x +...

=fx+hf’x+A^y>x+(A
irx+

Â "x)h*

+ (A2f’x+A lAJ'"x+^^)v+ . . ..

upon substituting for 6 its equivalent series and collecting the

several powers of h.

Hence equating coefficients

Af*=l2 r>

AJ"x+A
lAJ'"x-\r eta

These equations give

. _1 . _ f"x
o“2’ 1- 24/V

we have

fxrx-trw
etc**

48(/"aj)2
’
et *

whence 0
_i+i r»°-2+|i24/,

'sB

^fxfx-irxf'n '

~^WTxf~
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It appears therefore that the limiting value of 6, when h is

indefinitely diminished is J; that is to say, the point R in

Fig. 18 is in the limit half way between the ordinates of

P and Q.

It should be noticed that if f{x) be a rational quadratic

function of x, f"'x and all higher differential coefficients vanish.

Hence for such a function 6= 1, and we have the equation

f(x+h)=f(x)+hf(x+
1)

as may at once be verified.

Jjf 147. The nth Differential Coefficient of a function of a function.

"W Let y =f{u) where u

=

Then will* ^ = 2*,%Krfr(u)

where n^Tr= the coefficient of hn in {<p(x+h)—
<J)
(x)}r

;
and the

summation extends to all positive integral values of r from

r=l to r=n.
To prove this, suppose x increases to x+ h

;
then <[>(x) becomes

<p(x+h) i.c.
t <f>(x)+ z where z is written for <j>(x+h)— <j>{x) or

h
<f>Xx)+^f(x)+^"'(x)+ (1)

Hence f(u) becomes f(w+z).

Thus f{ <j>(x+ h) } =f(u+ z).

Expanding each side by Taylors Theorem

, dy h2 d2
y h3 d3

y hn dny4. r "4.T
n! dxn

=f(u)+zf(u)

+
*,/»+ . . . +^/"(«)+

.

(2)

Substituting the series (1) for z in the right hand member of

equation (2) we obtain on equating coefficients of hn

nlS =coeff- h* in

+coeff. hn in

+coeff. hn in
(n 2̂

y[<p(x+h)-<p(z)]n-*f
n-\u)

+etc.,

the result stated.
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Ex. 1. Suppose u=x2
,
and therefore u=f{x*).

Here $(x+h) - <f>(#)=4(2 4).

We thus have to pick out the coefficient of 4n from the series

^+A)W)+^"
!̂

(2^+A)--y»-X^)+
(
- 2̂y!

(2;r+A)"-2/*-2(^)+...

thus obtaining

= (^•)’,/"(«2)+
w(“7 1 ix

^
r?)^r3)(2*)"-y-*(a!>) +...

as inductively proved in Art. 106.

Ex. 2. If u—a+bx+cx2 and ux=b+ 2exf prove that

^““=m(m- 1) . . .(ft - r+

f,. Vr- 1) eu
,

r(r-lXr-2)(r-3) A* 1

( 1
.
(n —r+ 1) 2.(;i-r+l)(w-r+2) «q4

#
[Lagrange.]

* • •

Bernoulli’s Numbers.

xJ^/l48. To expand w==/(#)

Let u

V In J #

2 c*~r
171 p°wers v ,r-

u=f(x) and uf

=/(0),

ui=f(x) and w/

1=/(0),

^-TWandiif.-AO),
with a similar notation for higher differential coefficients,

laurin’s Theorem gives

«=f = «'+™'i+fy2+ ....

Then Mac-

2 e*— 1 2!

(ffianging*tlie sign of # we see that the left hand member of this equation

remains unaltered ;
lienee we have

x2

u=u' -xu'i+^u's- ... ,
•

and by subtraction

0=2^+2^V3+ 2^«'6+ ...,

whence, by equating to zero the coefficients of the several powers of *xt

we infer that u'
1
=u\~u l

f)

—
... =0,

so that the expansion contains no odd powers of x *

* x g*
Again, since e*u*=v f , + .r-r,

Iff 2

we have, by differentiating,

‘ c*(wi+t4)=wi + j+(a?+l)^,

* e*
e*(w2+ 2 + w)=

W

2+ (a? 4* 2)—,
* • 2

+ 3u$ 4* 3u
x + u) = u3 Jr{x Jr 3)^,

etc.,
# .

* This artifice maj often be advantagdbusly employed.
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and putting x=0 in these equations we obtain from the first, third,

fifth, etc., u'=\

3Ma+w'=

5w'4+10tt2+w's

W6+ 35u\+ 21w'a+uf
-

sb
=
l>

etc.,

1 _ i
= “THT* = tV> ^8

Hence 14.1 ^-T 1 **
4. J.**A_r

6 2! 30 4!"r42 6!

'•= —OT> ®t<S.

_L**+on o i
T • • *

giving w'=l, w'2=

£ _ __
2^-l“ 1 'r

6 2! 3041^42 6! SOAf
This series introduces a set of coefficients which are found of great

importance in the higher branches of analysis. The series is frequently

written in the form
1

2 e*-l \e* —

1

+
2/

and the numbers 2?i, -^3» ^6> •••> whibh are calculated above are called

Bernoulli's numbers, having .been frst discovered and used by James

Bernoulli.*

The coefficients of this expansion were investigated as far as the term

containing .r
32 by Rothe, iind published in Crellc’s Journal. Professor

Adams has recently calculated thirty-one more.f

^149. Many important expansions can be deduced from that of
*

For example,

e*-l

Writing lx for iv coth lx becomes x cot x
,
and we have

* *cot*=l-B^g-B
Again, ffin x=cot x- 2 cot 2x

1 p 23x p Vtxfl 9r 1 p 2
3x p Wa? “I

-_-ft_.-S.4_! ---SLa-As, -*«, - -J

EXAMPLES.

1. Find the first three terms of expansion in powers of x of

log(l + tan as). Result, + f*»+...

2. Expand as far as the term containing at (1) log(l + cos x) and

(2) log(l + x sin‘aj).

* Art Conjectandi, p. 97. ,

t Encyclopaedia Britt. : Infinitesimal Gala Proceedings ofthe British Assoc., 1877.

Results.

1(2) *»-!**+...
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3. Prove log cos*- - ajj - 16?* - 272?!...

»A Prove
2 3 24 5

5. Prove e*
-60*®! +ac+la^

+

2 3

0. Prov^.l-g^....

8. Prove log(l +a? + £c
2 + £c®+ a?

4)=£c + ^- +~ + ...

2 3 4 5 6

*t>T Prove (1 +*)*= 1 +a? - 1*» V fo* - I*5 ...

t/fo. If a„ be the coefficient of ** in th’e expansion of e*sin a:, ^how
that • sin—

a -fiEJ+5rJ-V»+ .’= L
" 1! 2! 3! n!

/ " [I. C. S. Exam.]

k'll. From y= (a;+ ^/1 + a2)" obtain a linear differential equation

with rational algebraic coefficients, and by means of it find the

expansion of y in ascending powers of sc.

12. From the relation y =0.-
+

.?)! obtain a linear differential equa-
1 — sc

tion with rational algebraic coefficients, and by means of it find the

expansion of y in ascending powers of x. [I. C. S. Exam ]

1p. If tan y= 1 4- asc + bx\ expand y in powers of sc as far as sc
5
.

/ [L C. S. Exam.]

14. If J
0,
Av etc., be the successive coefficients in the expansion

of y ass e
coam*+B,nm*

J
prove B

IL C. S. Exam.]

15. If ansc
w+ on+1cc

w+1 + an+2cc
n+9 be taree consecutive terms of the

expansion of (1 - seisin"1# in powers qf x, prove that

n- 1 t .

•

an+2= — ; yw+ n\2 r
•

also that all even terms vanish, and that the expansion is
,

s-ia*- JL.a*

—

2
\
4

-xr -T 3.5 3.5.7.
[Quarterly Journal].
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16. If a*+ 2*= 2 log(c^j

and y= a
0 + a

1
a; +^2 + ...

,

21

show that an+2 + an+1 + nnn= 0. [Oxford, 1888.]

17. Prove **± h) +/(x ~ h)
=f(x) + +

h
~f""{x)+ • .

.

18. If tf = loga5,

.v , du x* d?u i e\ du (log 2V* cPu
prove that «+*s -r

2|
^+...-0 + 108 2.^ +4^+...

19. Deduce from Taylor’s Tliecrem, by putting h= -x, the series

/(*) =/(o) + xf(x) - ~f"(x) + ~ etc. rT>/ J\ / J\ / J \ / 2r w 3v ° y
[Bernoulli.]

v^0. Prove 1

Aan
~1

(se+ 7i) = tan-1# 4-
*(7* sin‘0) sin 0 sin 20

-i-
v—

0
' sm 30 - v —-

—

i- sin 40+ etc.,
' 3 4

where x = cot 0.

21. Verify the following deductions from Ex. 20 :

—

/ 1 \ 71* « /j • n COS^0 • no COS 0 • o /] CO8^0 * . /j

(1) -- = 0 + cos0. sm04-- —sm2^ sm304— sin40+...
2 2 3 4

by putting 7i = - a; = - cot 6.

(2)
* = j? + sin 0 + 1 sin 20 + J sin 30 + \ sin 40 + ...22

i
'

by putting A = - +*2 =

/«v7r_sin y‘ 1 sin20 1 sin 30 1 sin 40
*

' 2 cos 0 2’ cos20 3’ cosJ0 4* cos40

by putting h~ — a; - i = -
a; sm0.(

wjr uuwixj^ — .— n [Euler.]r x sm 0 . cos 0
J

22. If be a rational fraction in which the denominator has n
F(x)

factors, each equal to as -a, and the remaining factors are x - h,

a; - A, etc., so that F{x) = (x- a)
n
<f>(x) where

<j>(x) = (x - h)(x - A)...,

prove that

+
*

+ ...

x-h

/(«i + ,
1 * f/(«) 1m (x-a)"~l

i

f* —

—

1 d2M + „
2\(x - a)

1'-2 dd1 w«)J
_/(?)_ l +l.+
>(«)(*-«;ij a-

A
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23. Establish the following approximations to the length of a

circular arc :

—

Let C be the chord of the whole arc,

H do. half the arc,

Q do. quarter the arc.

Q TJ _ Q
(1) Arc =—-— nearly. [Huyghens.]

(2)
+ ^

40

Examine the closeness of the approximation in each case.

24. Find by division the first six of Bernoulli’s coefficients.

mi 1 1 1 1 5 691
iney are

3Q, 42> 3Q, 6(J, 27
-

30
-

25. Prove by continuing th^ differentiations in Art. 148 that

_1 + 1 + w n _ w(w»-l)(w-

2

)B . = .

n+1 2 2!
1

4!
3 ’

a formula from which the values of the ccoefficients Bv Bv .. can be

successively deduced by putting n = 2, 4, 6, etc. [De Moivre.]

' 26. Expand *n powers of 0.

[Differentiate expansion of cot0, Art. 149.]

^27. Prove = 1+ 2(2- \)?}& + 2(2
3 - l)f?0* + ...

sm0 2! 4!

0
[Use cosec 0= cot - - cot 0 and Art. 149.]

^ 'sa Prove
J! 41

%

29. By taking the logarithmic differential of the expression for

sin 6 in factors and comparison of the expansion of the result with

that of 6cot 0 (Art. 149), show that

p _2(2»)!f 1 11 \
•Bsn-i

(2*-)»{
1 +

2a" 31" /

2(2n)I

_3(2«)>.

(^r n 'i

1

.IV
rw)

[Raabe.]

where 11^1 -^ denotes the continued product of such factors as

i »

1 -A for all integral prime values^of r from 2 to oo . %
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^31. Expand log^Bi? and log tan x by means of Bernoulli's num-
* x

bers. [Catalan.]

32. Show that

, cosh x- coso! 2o»+icoa!^ jf" .. o6 ^ “*2 2n (2m)!

[Math. Tripos, 1890.]

33. Expand sin(m tan~1a?)(l +a^)?

in powers of x. [Bertrand.]

34. Being given the two convergent series

y ~ a0 + a
l
x +Mapc

> + ... + ansc
n + ...

logy = 60 + + bp? + ... + 6„a? + ...

prove nan = + 2V„-a+ 36aa„_3 + . . . + m6b«0.

35. Prove tan~Ia-= -r-/l + - -*?— +—i
( — Y+..A

. 1+|4 Jl + s* s.su+rf/ I
, [Frenei.]

36. In the equation «

/{x+h)=f(x)+hf(x+eh),

if 6 be expanded in powers of h, the first four terms will be

e=l+ 1 /#+ 1

2
+
24/2

/t+
48 /2

2
+

5760/2®

suffixes being used to denote differentiations.

37. In the equation

.
A*+ h) =/(x) +A/» + . . . +^ }

/-*(* - <%) .

show that tfye limiting value of 6 as A is indefinitely diminished is 1

38. If in a plane curve y =J{x), Fbe the midpoint of a chord AB
drawn parallel to the tangent at any point P (x, y\ prove that when

AB approaches indefinitely near to the tangent at P, the angle which

PV makes with the axis of x approximates to tan”1

^
- where

p, q and r are respectively the first, second and third differential

coefficients of y with regard to x.
[Oxford, 1890.]

Show also that the angle which PV makes with the normal is

ultimately [Oxford, 1886.]

* Ip a cirole PV coincides with the normal. This angle therefore measures the

deviation of the curve from the circular shape. Transon (Liouville, voL VI. ) calls the

angle the “ deviation.” Dr. Salmon names it the “ Aberrancy of Curvature ” (see

Higher Plane Curves, p. 366).
1

*
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39. If u= ef*2ana:*,

prove that ^ +

-

3f
+^f+ - + ?<)

[Gregory’s Examples.]

40.

*Show that

ni^^log *)“] = 1 + log * + fj^og xf +— + ^(log*)“

where tfr ==the sum of the products J at a time of the first n natural

numbers. [Murphy.]

41. If F(z) and J\z) be two functions which are continuous and

finite, as also their differential coefficients, between the values x and

x + h of the variablejs, and if f'(z) does not vanish between these

limits, prove that

F(x i A) -/(x) = F’(x ^ Oh)
f(x + h) -f(x) fix + Oh) .

where 0 is some positive'proper fraction. [Caught.]



CHAPTER VI.

PARTIAL DIFFERENTIATION.

150. Functions of several Independent Variables.

Our attention has hitherto been confined to methods for the

differentiation of functions of, a Single independent variable.

In the present chapter we propose to discuss the case in which

several such variables
t
occur. Such functions are common;

for instance, the area of a triangle depends upon two variables,

viz., the base and the altitude; while the volume of a rec-

tangular box depends upon three, viz., its length, breadth, and

depth
;
and it is plain that each of these variables may vary

independently of the others.

151. Partial Differentiation.

If a differentiation of a function of several independent

variables be performed with regard to any one of them just as

if the others were constants, it is said to be a partial differen-

tiation .

3 3
The symbols ^ —

,
etc., are used to denote such differentia-J

t
dx 3y'

tions, and the expressions etc., are called partial

differential coefficients with regard tQ x, y, etc., respectively.

Thus if, for instance,

u= e*y sin z,

we have
ou • .

—=y(*Vsvaz,

3u •—=xe?v 8iii0,
3y
3u

* 3z
srC**' cos z.

112
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152. Analytical Meaning.

The meanings of the differential coefficients thus formed are

clear; for if we denote u byf(x, y, z) the operation denoted by

~ ropy be expressed as
ox '

, f(x+h, y, z)-f(x, y, z)
X/CftsO ^ 9

, . t n “du du *

and similarly for — or

These partial differential coefficients are often conveniently

written uXf uy, uz.
•

153. Geometrical Illustration.

It will throw additional light upon the subject of partial

differentiation if we explain* tl\e geometrical meaning of the

process for the case of two independent variables.

Let PQRS be an elementary portion of the surface z—f(x, y)

cut off by the four planes

Y=y
, Y~y+Sy\ [Capital letters representing

X=x, X=x+4xf current co-ordipates],

so that the co-ordinates of the corners P, Q, Rt 8 are

forP 2/,/(a, #),

for Q x+ 8x, y, f(x+ Sx, y),

for 8 x, y+ 8y, f(x) y+ Sy),

and for jfe x+Sx, y+Sy,f(x+Sx, y+ Sy)

Fig. 20»

IfPLMN be a plane through P, parallel to the plane of xy9

and cutting the ordinates of P, Qt
R

} 8 in P, L, flf, X respec-

tively, we have
B.D.G. H
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LQ =/(as

+

Sx, y) -f(x, y),

NS=f(x,y+Sy)-f(x,y), • (1)

MR=f(x+Sx, y+Sy)—f(x, y).

'dz
Hence the partial differential coefRcient ^ obtained by con-

sidering y a constant is

=Liu=J— SX
'fx~ =LtjO'=Lt tan LPQ. (2)

= tangent of the angle which the tangent at P to the

curved section PQ parallel to the plane xz) makes

with a line drawn parallel to the axis of x.

Similarly ^
z

,
which is obtained on the supposition that x is

y *

constant
e

•*

= Ltts.nNPS, (3)

= tangent of the angle which the tangent at P to a section

parallel to the plane of yz makes with a parallel to

the axis of y.

It further appears from the figure that

r, MR NS=
o

jyjf~
= tangent of the angle which the tangent at S

to the carve SR makes with a parallel to

• the x-axis.

Now when Sy or PN is diminished without limit the plane

NSRM approaches indefinitely near to the plane PQL
y
and the

tangent at S to the curve SR ultimately coincides with the

tangent at P to the curve PQ.
0 0

* C. Lky--o
d
-f(x, y+Sy)'a/*1 v)

and the order of proceeding to the limit when Sx and Sy

vanish is immaterial.

154. If the tangent plane at P to the surface cut LQ, MR,
NS in O'. S', S' respectively,

LQ'=PL tan

.

Sx,

.

.(4)

NS' -PNtmNP8'=^ . Sy,. .(5)
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Also the section made on the tangent plane by the four bound*

ing planes of the element is a parallelogram, and the height of

its centre above the plane PLMN is given by \MR and also

by \{LQ[+N8'), which proves that

MR'=LQf+NS'

.(6)

The expressions proved in (4), (5), and (6) are first approxi-

mations to the lengths LQ
t NS, and MR respectively, and

differ from those lengths by small quantities of higher order

than PL and PN, and which are therefore negligible in the

limit when Sx and §$ are taken very small. The investigation

of the total values of LQ, NS^ MR must be postponed until we
have investigated the extension t>f Taylor’s Theorem to func-

tions of several variables. (Art. 175.)

155. We may state the rule established in tte preceding article (equa-

tion 6) thus

:

In the limit, the total variation in z

— the variation due to the change in x
-I- the variation due to the change in y,

supposing that as each variation is estimated the other quantity is

regarded as constant.

This may be illustrated further.

Let P be any point (co-ordinates r, 0). Let a point travel from P to

any contiguous position Q(r+ 8r, 0+86) along any path whatever. Lfet x
and x+8x be the abscissae of P and Q- Let P and Q be so close that 8x,

8r, SO are infinitesimals of the first order, so that in comparison with them

their squares, products, and higher powers may be disregarded.

Draw circular arcs whose centres are at the pole 0 and radii OQ and OP
cutting OP at P and OQ at Q' respectively.

ThenPP =Sr, PQ'=r86, and to the first order

P%r(r+8r)80f]^rt80,

chord PQ—sxg FQ= rSO*
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Also the angle QFO differs from a right angle by an infinitesimal of the

first order.

Hence to this order the projection of FQ on the initial line= -Pf

Q sin 6
= — r86 sin ft Also projection of PQ= algebraical sum of projections of

PP FQ. Thus we have the following equation among first order

infinitesimals, viz.

:

&?= 8r cos 0 - rhO sin ft (1)

It should be noticed that the projection of PP\ viz. Sr cos ft is the

variation in or due to a change Sr in the value of r, 6 remaining constant

;

whilst the projection of FQ or of PQ' is the variation in x due to an

increase 80 in the value of ft £ remaining constant.

Moreover, since jr~r cos ft #

we have = cos ft 2^= - r sin ;

or ou

so that equation (1) may be written'

Or oO
,

verifying equation 6 of Art. 154 in this case.

Examples.

1« If A =xy, explain geometrically the equatiem

by reference to the area of a rectangle whose sides x, y are allowed to

increase to x+&x, y+8y

;

the increments being infinitesimals of the first

order. *

2. If Y—ocyz^ show geometrically that

156. Differentials.

It is useful at this point to introduce a new notation, which

will prove especially convenient from considerations of sym-

metry.

Let JDx
, Dy, JDz be quantities either finite or infinitesimally

small whose ratios to one another are the same as the limiting

ratios of Sx, Sy, Sz, when these latter are ultimately diminished

indefinitely. • We shall call the quantities thus defined the

differencials of x, y, z. Also, as we shall be merely concerned

w,ith the ratios of these quantities, and any equation into

which they may enter will be homogeneous in them, it is

unnecessaryto define them further or to obtain absolute values

for them. ’The student is warned again (see Art. 39) that the
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differential coefficient ^ is to be considered as the result of

performing the operation represented by upon y, an opera*

tion described in Art. 37. The dy and dx of the symbol

cannot therefore be separated, and have separately no meaning,

and hence have no connection witty the differentials Dx and Dy
as defined in the present article; but at the same time we have

by definition

Dy : Dx= Limit of the ratio Sy : Sx

dy

.

dx

'

fir* 't*

and therefore

and (which is a fraction)

= y^ (which is the result of the process
ciX

of Art. 37).

We have used a capital in the differentials Dx, Dy, Dz
for the purpose of explanation, and to avoid any confusion

between
#
the notation for differentials and for differential

coefficients; but when once understood there is no necessity

for the continuance of the capital letter, and it is usual in the

higher branches of mathematics to denote the same quantities

by dx, dy, dz. Hence we shall in future adopt this notation.

157. Equation 6 of Art. 154 may now be written

j dz,
,
dz,dz=-dx+- dy

dx dy J

when Sx, Sy, Sz become infinitesimally small. This value of dz

is termed the total differential oi z with regard to x and y.

The total differential of z is therelore equal to the sum of the

partial differentials formed under the supposition that y and

x are alternately constant.

Ex. Consider the surface

*-*v,

then and

whence dz«Zxxfdx+ Zatydy.
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158. It is easy to pass from a form in which differentials are

used to the equivalent form in terms of differential coefficients.

For instance, the equation

, dz,
,
dz,

^dx^dy^J
may be at once written

dz_dp dx dz dy
dt~dx ~dt+dy dt’

where t is some fourth-variable in terms of which.eacb of the

variables x, y, z may be expressed
;
for

dz=^.dt, dx=^.dt, dy=~.dt (Art. 156).

Similarly the equation ds2=hxi+dyi

maj
, by the same article, be written in the language of differ-

ential coefficients as *

159. Total Differential (Analytical).

Two independent variables. We may investigate the total

differential of the function <p(x, y) analytically as follows

:

Let u=<p(x,y),

and when x becomes x+h and y becomes y+k, let u become

u+Su, then u+Su=<p(x+h, y+k)

and Su=<l>(x+h, y+k)—<f>(x, y)

=4>(x±h, y+k)-<j>(x, y+k) h
<f>(x, y+k)—$(x, y) k

h ' k
' '

And in jjrqpeeding to the limit when h becomes indefinitely

<p(x+h, y+k)—<j>(x, y+k)

h
snlall

becomes (by Art. 152) . y+&).
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and ultimately when k also diminishes indefinitely

«£(**«*

Again <* V)

at the same time becomes

B0(s, V) • B^
By By*

And lastly in the notation of differentials (Art. 156) the

ultimate values of the ratios $u:h:k may be expressed as

du:dx:dy. Henco
#
equation (A) becomes

7 Bit*
,
da 7dU=

d
-Hx+

d
-dy.

* * | •

160. Several independent variables.

We may readily extend this result to a function of three or

of any number of variables.

Let u=<p(xv JTyXj),

and let the increments of xv x2t x3 ,
be respectively hv J2,

and let the corresponding increment of a be Su; then

Su^Qfa+h^ x
2
+h

2, x3
+h3)-<f>(xi,

x2,
x3)

__<t>(Xx+K *2+ *2> + i,
x2+K ®3+h)i

•“ A
x

I 0(®1» ^2 “b ^2* 0C®1» ®2» +
+ 5 \
I 4*(Fi ' $0*1* ^3)7, .

+ 5
A.,

whence on taking the limit and substituting the ratios

du : da^ : dcc2 : das8 instead of the ultimate ratios of Su : : A2 \\ t

we have
i da , . da j ,

da ,

i.e., the total differential of u when a^, &2, x3, all vary is the

sum of the partial differentials obtained under the supposition

that when each one in turn varies the others ate constant

161. And in exactly the sam»way if *
*

u=<f>(xv x2, ...xn).

Zu Zu Zu Zu
we have *-S*k+£^+ghfc+...+g*W
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162.

Total Differential Coefficient

If u=<j>(xv

where xx
and x2 are known functions of a single variable x, we

have
, du , ,

dn,
du=

zi,
dx

>+ ix\
dx*

and remembering (Art. 15G) that

M/M/— UUJUf t/Ul/j —

we obtain
dlu_ du dxi, dx2
dx~~dx

1

' dx^dx
2

dx
*

And similarly, if u= a>
2 , . . a^),

where aJlf x2, ...,xn, are known fuhctions of x, we obtain

c llu^Zni dx
x

du dx2
du dxn

dx~~dx
1

* dx *dx2 dx '1
’**'c)a;n * da

And further, if a
3 , a2, x3, .. , an be each known functions of

several variables x, y, z, ..., we shall have in the same way the

series of relations

du __
du dx

x
du dx

2
du dxn

dx~~dx
3

* dx dx
2 dx "’dxn * dx

9

du_ du dx
x

du dx
2 du dxn

dy^dx
x

* dy
+
3a2 ’ dy + '"dxn *

%

etc.

163.

An Important Case.

The case in which u—<p(xt y),

y being a function of a, is from its frequent occurrence worthy

of special notice. •
' "

Here, by Art. 162,
du__d<f> d<j> dy
dx~~dx dy * 3a?

since
dx_-
da

’

164.

Differentiation of an Implicit Function.

If we have '

<p(x, y)= 0,

then
v

<f>(x+k, &) = 0.

Hence

<f>(x+h, y+k)-</>(x, y+h) ,
0(a, y+&)-0(a. y) *

l » it • r
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which, when h and k are indefinitely diminished, becomes (as

explained in Art. 159)

dy=Q
dx ^dy ' dx ’

dj>

dy dx
°r

dai~ ~d$

* to
This is a very useful formula for the determination of ^

in cases in which the relation between x and y is an implicit -

one, of which the solution for y in terms of x is inconvenient or

impossible. •

Ex. <b(x, y) == a? +y3 - 3axy= 0 ; fiAd •

ax

dy
__

•or- ay
dx~ y

l— ax

165. Order of Partial Differentiations Commutative,

Suppose we have any relation

y= <f>(x, a),

where <M is a constant, and that by differentiation we obtain

%

|5Then since the processes of differentiation take no cognizance

of the particular values of any of the constants involved it is

obvious that' the result of differentiating <p(x, a') would be

F(x, a')

;

that is, the operation of changing a to a' may be

performed either before or after the differentiation, with the

same result. We may put this statement into another form,

thus : Let Ea be an operative Bfn Vd such that when applied

to any function of a it will change a to a', i.e., such that

then in operating upon the function <j>(x, a) the operations Ea
and 4r are commutative, that is, *

ax *

E<q£t>(x< a)=fa
E«<Kx> ay=*F(x, ay
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Next, suppose y).

The partial differential operations^ and g^liave been defined

to be such that when the operation with regard to either vari-

able is performed the other variable is to be considered constant.

We propose to show that these operations are commutative,

i.e. t that
_3 3

(j=
_3 d

dx 3y
Z

dy dx'

Let Ey denote the operation of changing y to y+Sy in any

function to which it is applied
;
then Ey and the partial oper-

3
ation ^ are commutative symbols. And

e w&v)
3 3., , r ,„

" dx dx , t, e
ay

y)=L%= 0- ^7 ,
by Def.,

=LU

3 V Mr, fyfay)
^by<t>(x, y)-
dx

fy=0

j*-*. 3 Ey<t>{x,y)-<t>{x,y)~Ut
^°dx ty

® Ey<j)(x, y)—<j>(x, y')

“ac iy“°
sy

3 d. ,

-s ?/<* »>

166. Another Proof.

The ordinfite /(0, 0) of the point in which any surface y) cuts the

2-axis is clearly independent of the particular path traced by any point

moving from the arbitrary position (#, y, z) to the ultimate posi-

tion {0, 0,/(0, 0)} \ notwithstanding that in some cases, in estimating the

ultimate value /(0, 0), it may be necessary to evaluate an undetermined

form. In other words, whenever it is necessary to evaluate /(A, 1c) for

zero values of h and k, the order or manner of making h and k diminish to

zero is indifferent, and it is allowable if we choose to suppose them to

approach their ultimate values simultaneously.

Thus 1/tfrmiQ (A, k)= Ltfc—O Lts^of{hy k) 3 Lth*mJbmtif{ht k).

Again, it was pointed out ill the previous article that processes of

differentiation take no cognizance of the particular values of any constants

involved. Jt therefore follows that if

.«y+A a).r.^&.g),/^ax

a
')=F(x, ay,

h
then will
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that is, a may be changed to d either before or after the limit is taken,

with the same final result

Now, by definition,

= lthJ>(*+k,y)-<K*>y\
• <S h ’

and, since x and y are independent, we may regard y and its increment h

as <

is written for y, is

i constants, while x is varying. Hence the value of when y+k
ox

Ih-flr+h v+k) -<K*> y+k)

(This has also been established geometrically in Art. 153.)

Therefore,

LtJr y±h)-zh^<tt*+
h>y)-<Kx,y)

d d
dydx

</)(x,y)=ZtkSSo-

- Tt
x . Lth M?±Ky+l)- <K¥il+t)-^v+h,

hk

and as it has been established that the order of proceeding to the limit is

indifferent, Jp Jp <£(#, y) may be shewn equal* to the same expression.
oj? cy

167. Extension of Bole.

This rule admits of easy extension by its repeated applica-

tion. Thus

(D’d>=aixi>
-KDV» ©-gvg-crv

Also if we have more than two independent variables, for

instance if u= tp(x, y, z)

©gg-(4XD(S)»
-Q(I)Q—.

so that the order in which the differentiations are performed is

immaterial in the final result. •

*

168? Rotation.

It is usual to adopt for .
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the more convenient notation

d2u d2
v, dp+i+ru,

dx
2t

dxdy' dxPdyrdzf

and the propositions above enunciated will then be written

d2u ^ dhi_
f

dxdy dydx

d?u *
= dPu

^

dx2dy dydx2
'

'd
m+*u _ 3w+nw,

dxmdyn ~*dyndx™
etc. c

We shall also sometimes find it useful to further abbreviate

,, . d2u d2a t
0‘2

tt ,, *.
, ,

the expressions ^2 ,
<$tc., into u^, uxyf uyyy etc.

169. The formulae here t established may be easily verified in any

particular example.

Ex. Let u— sin(^y),

then wx =ycos(ay),

and * uyz— cos xy-xy sin xy (1)

Again ny=x cos xy
y

and Uxy= cos xy—xy sin xy
y (2)

and the agreement of expressions (1) and (2) verifies for this example the

result of Arts. 165, 166.
,

170. It is convenient to use the letters p, q,
r, sy t, to denote

the partial differential coefficients

00 00 d2
<f>

020 0*0

dx dy ' dx2 ' dxdy dy2
'

where 0 is a given function of the two variables x and y .

Hence we have, if z= <p(xy y)y

dz=pdx+qdy, Art 159;

and to obtain from the implicit relation <f>(xt y)=0, we have

dy^-R.
' dx, q

o
p

*

17J. To obtain the Second Differential Coefficient of an Implicit

Function.

To obtain^ we have*,only to differentiate the last result of



PARTIAL DIFFERENTIATION. 125

the preceding article
;
thus,

«

dp dq
d?y _ ^dx.

dx2

Now dp^p+vp dy= r+s(_p\ = <i
r-Ps

,

dx dx dy dx V g/ 2

and dy-s+ti-A-v-v1
,

dx dx dy dx \ q) q

giving *y_ t(*=*M*=*)
dx2

q
2

Similarly

cated.

_ _ q
2r— 2pqp+ p

2
t

*
s

. i

etc., jnay be found, but the results are compli-

•

Examples.

1. If CII
prove

dn dx dy=m H n •'t

u x y

and verify the formula •

a oxoy oyox

2. Verify the formula ?^-= in each of the following cases :

* oxoy Oyox

(1) w= sin“1^-

w „*iK) d2 -z2

(3)
xy

t (4) u=vv.

3. If
yy *

Was I-.,

$7 +Z

show that
d?u _ 3s

?/
_

dydz2 dz^dy „

4. If a?= r cos 0 and y=r sin ft

prove oJr= cos &dr - r sin 0dft

and dy —sin ddr+r cos $d9 ;

and hence that dx2+dy2=dr2 + ^d#2
,

and that xdy-ydx=r*dO.
9
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tt=log(*2 +.y2+*a
),

dhi .,d%u dhi

dydz ^dzdiT dxdy

6. Prove that if ^+?!=1,
ar oz

7. Show that if

dy_ b2x a , d?y_ b*

dx a?y cfc? aPy*

afn+ym =zam
%

S-‘<—Kf£d* ' ' y’—1

8. Show that at the point of the surface

=

c

w^ere x~y—

z

9

0 dxdy~
{

x

log ex /
.

^
[Oxford, 1889.]

0. If there be an equation between three variables p> t9 v, prove that

(ty x(.f) x<t) =-i.
r \ (it /v const. \ Hv/p coriUt \dp/t const

172. To find^ and,^ from the equations

Here, as in Art. 164,

2/> z)= 0,

V> z) = °-

By "
cfsc 05; " dte

1

^2 I ^2 <fy . ^=Q^ 0^ * dx 02?

* dx

Solving these equations we obtain

dy dz

dx dx
dF

1 dt\~dF\~dF
l

~~
dF

x
dF

2
dF^~dF

1

dz * dx dz * dx dx dy dx " dy

1

~dF
x
dF

2
dF2 dFS

dy dz dy dz

which give the values of ^ and
dx

{
dx

Ex. Given

and 1

y=Fx(x, z)
9

*=Ffci y),

dFi
j
dF\

.
dF

i

dyjdx +
dz dx

dF db\dF*
dz dy

prove
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173. Owen that

F=*0(as+£f, y+yt, e+£t,...)

where x, y, z..., £ rj, £..., and t

font*a system, ofindependent variables, to show that

Let

so that

dV JdV ,
dV ,cdV

dt *dx *dy ^dz '*

*1=*+£<»

Vi^V+rit,

dxx

da

etc., •

«

= 1 ?Mi— 1 ete
’ dy ’ "

^1 — f
dt *’

then

and

Siraila^y

and

^1^0,
d
- 1Jl=

dy dx
0, etc.

;

V=<P(*1> 2/l. «!.•••).

dV=dV dx
x
dV dy^

dx 3vCj dx dy
1

' dx

=dV
dx

x

dV dV ,

*y~*yi ’

3Tr_3F SiCj 3lT

di~dx
x

’ ~dt
+
dy

x
' 3*

+ ”‘

JdV, dV+fdV 4.=
hx +n

~dy
+
^dz

+-

(Art. 162)

174 Hence we have the following identity of operators,

viz.
d .'d d .d

dt ' % '

*dz

and as the variables are all irdependent and the operators

ta«M. (D"“(4+4+fS+-)’ .

the development being made < in formed analogy with the

Multinomial Theorem. >

For example, in the case of

' y+¥).
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we shall have
dV

dt

d*v
dt*

£ *1 cv>.

>dV
dx

,0*V

.

'a*2

dV
dy’

9*f

.

etc.

9a% '
' 9y!

Taylor’s Theorem. Extension.

175. To Expand <p(x+h, y+Te) in powers of h and k.

By Taylor’s Theorem we obtain

<p(%+h, y+h)=<p(x+h, y)+k^~^ 1<? d*<j>(x+h, y)
T 21 dy*

f.

and expanding each term we have

<p(x±h, y + k)= <p(x, y)+^+ 1, ;
•

or, as it mgy be written symbolically,

<f>(x+h, y+k)=<j>(x, y)+(^+^)^+^(^+^)v•-•••

176. Since it is immaterial whether we first expand with

regard to k and then with regard to h, or in the opposite order,

we obtain by comparison of the coefficient of hk in the two
results the important theorem

_ 32
0

'dxdy~~ Zy'dx

already established in Arts/ 165, 166.

177. Agreeably with the notation of Art. 116, we may write

the result of Art. 175 as

hA-f-it—

4>(x+hi'$+k)= e
9X 9

y<f>(x, y)
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178. Further Extension. Several Variables.

The form of the general term in the preceding case and the

further extension of Taylor’s Theorem to the expansion of a

function of several variables is more readily investigated as

follows

:

Let $(#+$> 2/+^» •••)

be called F(t). Then Maclaurin’siTheorem gives

F(t)=F(0) + tF(0)+lFXO)+...+?
]

F^t),

and by Art. 174 - •

Fr
®~(£dx+%+ ‘") )>

and since the variables x> y, . are independent of £, we may
put £= 0 either before or afteb the operation has been performed.

Hence Fr(0)^(^
x+.^+ y,

We thus obtain

+^t(^+.") <p(x+g$t, y+tft, ...).

Now,.putting h=gt, k=t)t, l= gt, we obtain

<t>(x+h, y+k, z+l,...)=<f>(x, y, z,

+
(
h
ic

+I%+l^+ -)^x’
->*

+lfah+1%+") •••)+•••

+
~;(^

+

k?-+..)) <j>(x+6h, y+ dk,...).

179. Extension of Maclburin's Theorem.

Moreover, if we put *=0 and j ==0, and then write x for h
and y for 1c, we have an extension of Maclaurvn’s Theorem
which, for two independent variables, may be written

**,»>“*0-°)+a’(aS.+s'(l).
'

’

.

4KS),+^SU+Wl£)J
E.D.C
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180.

If we now recur to Art. 154 we see that the true value

ofMR is f(x+ Sx,y+ Sy) -fix, y)

showing what error was made in that article in taking MB' as

an approximation to the correct value.

The student will find no difficulty in writing down the true

values of the lengths of LQ or JVS.

Euler’s Theorems on Homogeneous Functions

181.

Ifw=AxayP+Bxa'yP+ . . . — ^AxayP, say, where

a+/^=a'+/3',= ...=n,

to shoiv that au- + nu. c

du
,
da

By differentiation we obtain

5^=2Aax*-'yP,
OX

^=2

then \‘
( + y^y =2Aax^yP+2Afix^yP

— '2A(a+ /3)xayP

, =zn'2AxayP=nu.

Tt is clear that this theorem can be extended to the case of

three or of any number of independent variables, and that if,

for example, u=AxayPzy+Bxa’yP'zr/+ . .

.

where a+fi+y=

«

,

+/3
/+y

/= ••• = w,

,, du
y
du

,
du

then will X- +y +z =nu.
ox oy oz

The functions thus described are called homogeneous functions

of the 71
th degree. **

i

182.

\^e now put the same theorem in a more general form.

Pef. A homogeneous function of the 72
th degree is one which

can he pu.t in theform

4
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Let

Put

whence

Now, since

vu-x*F[y-,
\x x ’ J

y= Y, *.=Z, etc..
X X

dY_ ..y dZ
dx a?' dx"

OF 1 OF •

5- =
, _ =0, etc.

dy x’ ?>y

u=xnF(Y, Z, . .),

^.= nxn~ 1F(Y Z )4-,i'
nf^ ^ 4-^ ^ ^

ac
.

4 '"'+
\dT‘ 03'

+
0Z

'

0r + "'J

— nxn~ 1F{Y, Z,..

Ow „0F OF „ .OF
’

dy
x dY dy

x
OF’

0m OF OF „ .OF

Os OF Os OF’

etc. = etc.

Finally, multiplying by x,y,z,... respectively, and adding

dh . dll
,

dti
, wnnr „ xX

dx~*~
ydy

+%z+- =WjP(}> ^ ••> «***

183. If u be a homogeneous function of x and y of the n il1

degree, ^ will be homogeneous functions of the (n— I)
1
*

degice, and applying the result of Art. 182 to these we have

d
,

d\dw , -x3i6
X
dx ydy)dx

_ ^
^dx*

(d d \du
, ydn

\ dx \[oy)dy
~~

Multiplying by a? and y we have addition

x^4-*>xv -l/a—+ v -X
dx*

+ ~Xy
dxdy+y dy* W 1}

\
Xdx\ydy)

= 71(71— i)i&.

Similarly We may proceed and ’finally by induction establish

a general theorem of similar character, but of higher order

;

but it is better to adopt the method hereafter applied in Art.

186.

* ••
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184. If F= t4w+Un .i+ ^n-2+--*+ ^2H"'Ml+ W0»

where un, un _i, ... are homogeneous functions of degrees n9

vi

—

1, ... respectively, then

dV dV

^

x
H£+% +-

=(‘'4+ -)“*+(*5+-K-i+eto-

=nun+(n— l)un~i+(n — 2)itn - 2+--* + 2u2+Ui
=nV— {un _i-f*2wn -2+ 3un .3 + ... + (^-l)iti4*^o}*

Hence if F=0
0F 0F

aj0^-+ 2/^'+ "*+ ^n- i+2itn_2+ ... ^-nuo=0.

185. Let u~0(£Tn ), where JET,} is a homogeneous function of

the xth degree. 1
•

Suppose we obtain from this equation,

irn=F(u);

then

or

or

se^F(u)+y^(u) +... = nH„,

F(u){^+^+...} = «^«),

3«, 3w _ Mtt)
dx +y'dy

+"'~F(uy •0 )

In the 'particular case in which w= 0 we therefore have

a^r+y-r + --- s=0
dx J dy

Examples.

Verify the following results by differentiation.

1. Let u—a?+y3+ Sxyz.

This is clearly homogeneous and of the 3rd degree, whence
'

„.€*+»» -A
1*©'

(2)

2. Let

1 + .V\i

This is a homogeneous expression of degree ^r, whence

„

*

4

8. Let u=sin-'^y.

Here Art. 182 gives #^+yg^=0.

i
*
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Here Art. 185 gives

«-tan-<£±£
x-y

‘du . "du . «

*dx
+%=em3w-

5. Find which of the following functions are homogeneous, and in cases

of homogeneity verify Euler’s Theorem of the first degree

:

(a) xe~*.

(13) ye~*». •

(y) (*-,y)(log.g -log.y).

(8) rin-«£!+£

6. Given z=x?+y and y=z2+ .r, find the differential coefficients of the

first order,
#

(1) when x is the independent variable,

(2) when y is the*independent variable,

(3) when z is tfie independent variable.
,

7. Given pyx— a*, find^all the differential coefficients of the first and

second orders, taking x and y for independent \ ariables.

8. If u— sin
-1-^^^-?
•Jx+Jy

prove that

9. If u=aa'2 +by*+cz2+$fyz+ 2gzx+2hxyi

show that, if it be possible to find values of x
y y9

z which will simultane-

ously satisfy

cXr ~0y“3s *

\n,h,g

then will i /<, 6, / =0.
1

0, /» «

10. If u be a homogeneous function of the ra
th degree of any number of

variables, prove that
/ 3 'd Y*
(
J
dx

+3
'dy

+~) U=n U-

11. If y) and yjr(x
y y)= 0, prove that

Wh)Wr
12. If u be a homogeneous function *

" the nth degree in x
y y9

z
y
and if

u=f(X, Yy Z) where Xy Yy
Z are the first differential coefficients of u with

regard to xy yy
z respectively, prove that

n
'l DJT dlr dZ~n -1 [Oxford, 1886.]

13. If BT denote the operator

r»+jr

^
+ ""

and u be a homogeneous function of n dimensions in the variables x, y9
z
y ...

show that l)(sj - 2). . .(CT- r)lo£ w=(- Yfn . r! fOxroBD, 1888.]
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186. General Proof of Euler’s Theorems.

We now proceed to give a more complete investigation of

Euler’s results.

' Let u= <p(x, y, z ...) be any function expressible in the .form

xnF0!, -, ...
\x X

It is observable that if x+ xt, *y +yt, z+zt,... be written instead

of x,y,z,... in any such function we obtain the result

<p{x+xt,y+ yt, . :
.)
=xn(l + t)

nF

=,»(!+tr*&lr~)
= Cl +i)nu;

so that the effect is sinlply that* of multiplying the original

function by (1 +t)n.

No^r, let Vm denote the symbol of operation obtained by

expanding (xX+yV+zZ+ ...)
w by the Multinomial Theorem,

and after expansion writing —, , ... in place of X, Y
t
Z,

etc.; then we have, upon expansion of each side of the above

equality,

v +^F
1u+2-t

F2
?t+^,y3u+ ... + —^rr\i+ ...

And on equating coefficients of like powers of t

V1
u= 7iu,

V2u =71(71 — 1)11,

V3
u= n(n — 1\n— 2)u

,

etc.

Vru= n(n— 1). . .(n—r+ l)t&.

187. When there are two independent variables x and y,

these become
du du
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and for the case of three independent variables

dhi

du
.
3u

X
ite
+y^+z

*z=
nu’

» « . o3
2
W'

. 2
32w _

=w(n— l)it,

etc. »

188. It may be observed that although the expressions

i o 32u
. 1

3%
dxdy

jc&u
, o77 3% ,

ffiPw A A3 i7 3\2

,+ 2AZ?0— +Z;
2—

2 .and (A_ +A'
)

3a;
2 3&3y 3//

2 \ 3a; 3?//

are identical, care must be taken to distinguish between

and

* „32u
. a 3% ,X

dx1 ~^dxdy y dy~

( 3 ,* ?»\ 2 1

hs+V*-
It is apparent that the latter

( 3 ,

d V d)i du\=
(
x
dx+ydyAxdx +ydy)

=(4+4)®+(4+4X4)
(-

7
3?/

3u.
,

, d2u\
-^ac'+*a.

+
'”-'W

+
/ 32u du 9d

2u\

\
xy^+y^+y'dxdy '

t"dy ' * 9yV

23
2u 0 32

it
2
32

i6 du du
=X

dx2+ ~Xhxdy+y dy*
+X

te +y%r
and therefore differs from the former expression by the addition *

of the two terms
du du
"dx’ ydy

189. Laplace’s Equation.

02 0‘2 02
The operator

3^.2
+ 3^

2+ 0^2
1
r"V2

) plays a fundamental part

in the Higher Physical Analysis*

The equation y2F=0 is called.Laplace’s equation
; and any

homogeneous function of xt y% 2 which satisfies it is called a

Spherical Harmonic.* •

It is customary to denote x2+y2+z2 by r2

* Seo Thomson and Tait, Treatise on NatuMl Philosophy

,

vol. I., p. 171.

Laplace, Mtcanique Celeste, bk. II.
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Ex. 1. Let

and we have

Similarly,

The r

dr_dr d,

a? " ds~
m’ *’

'
r
=m(m - 2)/

m-V+ mr"*-3.

OJb 1

^ - i)rm-y+ /nr*
1 " 2

,

^ ' =m(»i.-2)r",-422+wr’"-J
.

.. by addition, y2 F=wi(w -2)rm- 2+Zmrfn -'i

or. yV*— m(ra+ l)rm -* 2
.

'

Since this expression vanishes when1 ra= -
1, it appears that * is a

split rical harmonic of degree -*1. t

4 ;

Ex. 2. If l
r
M be a spheric.il harmonic of degree* w, then will I

r
„/*’

2,<+I be

a spherical harmonic of degree - >i— 1.

Let w= VJr**\

T1‘» o'" a/ • pn -^ +1> • T=w

with similar expressions foi and
^ ^

Adding these together, •

V--

^

2VyL - 2(2«+

1

)
rJ+s( +/£•

+

*'”'•) + 2*<-*+ >

)

IIence, remembering that y2 V„

—

0,

and J
I1

)

|T

'+^"+*9
1

F"=»r„
dr ^ Dy d:

we have y2?4=0.

Ex. 3. Show that each of the functions

, _,?/ ? 2; 1 . r + 0
tan -i

, ,» log
a a-+y- r °r-z

satisfies Laplace’s equation.

Ex. 4. If n and v! be functions of,#, y, z, each satisfying y3F=0,

prove that • y2{uu')=2(uxu
'

x -fugu
f

v+ utv!^).

190. Conjugate Functions.

fWhen two real functiocs u and v of x and y are defined by

the equation u + >/^lv=f{x-^s/—\y) they are said to be

conjugate.
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Differentiating, we have

da

dum
t

/

—

T dv /- cm ov- -=- du dv

dy

Whence

and

Again differentiating,

and

whence

and similarly

02u

du_dv
dx~dy’

du_ dv'

dy~ dx

3%_ d2v

dx2 ~'dxdy

dPu'= j_
32v'

3y2
—

'dydx

dhi

dx dx

.(1)

•(2)

3a:
2 ' dy1 ®

&v
_L&y_

''~2+3
2/

2_0
Oa;

2

(3)

Ex. 1. If w+ V — Iw be a homogeneous function of x
, y, 2, of degree

p + \/ - 1<7, then

0?4
,

0M
,

'du

1111(1

X
dx+Vdy

+Z
dz
=pW ~qV

'

dv
au -1

ox
dv dv
y
5f
+

3i"
[Thomson and Tait, NaturUfThilo&ophy. ]

Ex. 2. If a and 0 be conjugate functions of a and b
,
whilst a and b are

conjugate functions of x and y, prove that a and 0 are conjugate functions

of x and y. [Maxwell, Electricity.]

02 I
r 02

J
r

Ex. 3. If the equation
3^2

satis^C(l when V is a given

function of x
, y, it will also be satisf ed when V is the same function of a

and 6, where <*=logs/x^ and 6-U
.-«J [math. Tripos.]

EXAMPLES.
»

1. Verify the formula in the following cases

:

0a?qy qya»

(a) « = sin^*
N

as •*»

(0). u « log{a? tan-1 J
t
x2 + y

2
}.

V



138 CHAPTER VI.

2. Find ^ (a) if aa? + 2kovy + by2 =1.

(/3) if + y4 = 5a2ccy.

(y) if (cos a)y = (sin y)*.

(8) if y* + .r* = (a; + y)*
+*r

.

(
€
)

if a?.y* = xcoa]f
+ y

108 *.

3. If w = sin~
ia5 + tan' 1^, sho\f that x^1 h y^ = 0.

y x dx oy

4. If w, y, 5? be functions of x such that

d ( dy\ d / dz\
= i >ii.

•'
l. « _ » w l.

prove that

cZ / r/7/\ cZ / ors\r‘MW *"ds(w
d f dz dy\ fl •

sT*,-?<&)*"•

f>. Jf w and y be both functions of* the same function of .r and y,

, , , du dv du dv , , , , D / #
i)y\ c> / c)v\

prove that - - • - - and that ('&-r )
= - (u )

ox oy Oy
<
Ox 0x\ dyj dy\ dx)

TsV
G. If V =/(w, y), ?* =/1

(.r, y), r--=f0(x, y), show how to find - in

, « dv , dv du
terms of _ and

i'X Oy

Ex. (riven n = x2 + y
2

,
y - 2rry, show that

3F 3F 0 .> oJjdF
x --if— • - y-v

(\r
J Oy On

7. Verify Euler’s Theorem
id t 0u

+ y =nu
Ox oy

for the functions (a) ™==sm/^-T
\x+yj

(ft —rtot

8. If u= <£(?/ 4 «*) + xp(y - a®), prove = a2^“-

9. If«=^g) + ^Q, prove^ +2^^ ^-^=0.

1<X K W = 2^--l)+^© +Kl) Pr°Ve^
^+u^+*$-v + *r-

1 1. Iff(x, y) - 0, ${x> z) = 0, show that

?fyt' dy _ df *
d<j>'

. fix dy dz ~ dx dz
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12. Find^ in terms of y and z from the equations

:

a sin x 4* b sin y = c.

# acoscc + fccoss-c. - rfl. C. S. Exam.]

13. If as
4 + y4 + ±a?xy = 0, show that

(2/
8 + a*xy

dy = 2(?x>j{xy + 3a4).

i4- if ©"+
(r)'

+ (:)'= i'“l*”d JJ. Also, find ^of/dz cfcc

when the variables are connected by the two equations

©-O'-.®' M+r>- —i

A
f

15. If u = F(x- y, y-- z, »-*),* prove |^+^“ +^ = 0.

T .
x ’V >

*
3m 3m ' Da n16. IfM= X, 2/> * .

prove ^.+^+^ = 0-

1, 1, 1

show that17 . If w = cosec~W'^~ ’A show that
Y

a;® + 2/®

.2^ , 3
d2

*4
+ ?/

29^ = tanw/1

3

tan^\

^ ^ 12 V12 12 )

£)2Z 02~
18. Find the value of the expression -

1 + ", when
OX2

Off-

a?*? + b'
2
y
2 - dhs* = 0. ri. C. S. Exam.]

19. If 7-At? + 22% + Cty
2
,
prove

/37V.3
2r_

2
3F.37\ a»F .

/3F\*
.
<?F

\3a-/ 3y'“ 3te 3/y 3.^3// \ dy ) 'dx*

20. If V= (1 - 2a:y i/
2
)

-
*, prove that

3F dr 2ir,x-z--y^ *y*V\
ox oy

«i2 &2 g
1

21. If .+T5 + -5 = 1> and lx + my + nz=0, prove that
a2 or cl 9

dx _ dy dz

ny mz~ Iz nx~mx ly
~&~~¥ l?~i?
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22. If ^+^+^=1, and
a2 o2 cl o*+A 6* + A c* + A

a<62 ~ c1)
|

y(c2 - a2
)

[

a(a2 - 6a) Q
<fo? efy dz

,2 *2

+ -b

—

r= 1, prove that

23. If
as*

+ + - = 1, prove that

[Oxford, 1888.]

[Bertrand.]

a2+ w 62 + u c1 + u

ux + uy + u? == 2(:mz 4- yuv + zm,),

24. If z and u be functions of x and y defined by

{z — <j>(u
) }

2 — x2
(y

2 --
-), { s - </>(w)

}
<£'(tt) = ux2

,

prove that 1 • ~ = xy.
Ox uy *

25. If Pdx + Qdy be a perfect differential of some function of x
, y,

prove that
dy $x

26. If Pdx + Qdy + Rdz can bo made a perfect differential of some

function of x, //, s by multiplying each tenn by a common factor,

show that I'(
dQ - d

f) + Q^JL -
)
+ Rf7^ - d®) = 0.

\oz OyJ \or oz J \oy oxj

27. If *= (x^ - ^{J(y 4 x) - <f>(y - *)}, prove that

/02
z 32~\ gJdz

5-*
[Oxfohp, 1889.]

28. If f be any function of A" and Y where X and Y are defined

by the equations X= </>(.«•, y)> Y= \j/(x
9 y), prove that

1 3m4W/_-vyflr„ y*/
/n!w! dx^y"

4
r!$! c)AvJP

where C7r> , is the coefficient of in

{<j>(x+ h, y + k)- 4>(x, y)}'{\p{x + h, y + k)- rf,(x, y)}‘.

t
[Math Tripos, 1888.]

29. If u be a homogeneous and symmetrical function of x and y of

n dimensions, and if its expanded form is '2Q
rx

r
y
n~ r

,
prove that

c
2{(2r - n)Qr) = 0. [Gregory’s Examples.]

30. If /(*!,. <E
2, *3 ... ,v„) b*e any homogeneous function which

becojnes F(XV X2 ... Xn) by any linear substitution for the variables

x
l9
x2 ... in terms of Xv X2

... and if x
x\ x

2 ,
x
3
’

... ;
XX9 X2\ X2 ...

be simultaneous values of the two systems, prove that

7*, + x2'f**+ xzf*z + = X
x
F

Xi + X^F^*X2
FXi + ...
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CHAPTER VII.

TANGENTS and normals.

191. Equation of TANGENT.
It was shown in Art. 36 that the equation of the tangent at

the point (», y) on the curve y==f(.>\i<i

'

X and Y being the current co-ordinates of any point" on the

tangent.

Suppose the equation of the curve to be given in the form

Ae,y)=o.
It is shown in Art 164 that

¥
<ly _ 'dx

dor df

Substituting this expression for^ in (1) we obtain

dl
Y-y=-^X-x),

«

<* (X~x)
tc

+{>

for the equation of the tangent.

•(2)

192. Simplification for Algebraic Curves.

If f(x, y) be an algebraic function of x and y of degree n$

suppose it made homogeneous in x, y, and z by the introduction

of a proper power of the linear unit z wherever necessary.
143
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Call the function thus altered f(x, y, z). Then f(x, y, z) is a

homogeneous algebraic function of the 71
th degree; hence we

have by Euler’s Theorem (Art. 181)

x%+y%+4^nXx>y> z)=°>

by virtue of the equation to the curve.

Adding this to equation (G), the equation of the tangent

takes the form +z%= 0 (3)dx
t
dy dz x 1

where the z is to be put =1 after the differentiations have

been performed.

Ex. fix, <y) = a7
4 +oraay-j-6,

y + c4 =0.

¥The equation, when made homogeneous in x, y)
z by the introduction ofa

•properpower of z, is '

fix, y,z)= x*+ a2xyz2+ b*yz*+ e*z4= 0,

and
*

^=4rs+a2
?/2

2
,

3/=0^2+ 65^,

3y r

2a2xyz+ ZWyz1+4c4*8.

Substituting these in Equation 3, and putting z= 1, we have for the equa-

tion of the tangent to the curve at the point (x, y)
AT(4r*

+

a2
y) -f Y{a2x+

6

s
)+ 2a2xy+ 3b2y + 4c4= 0.

With very little practice the introduction of the z can be

performed mentally. It is generally more advantageous to

use equation (3) than equation (2), because (3) gives the result

in its simplestform,
whereas if (2) be used it is often necessary

to reduce by substitutions from the equation of the curve

193. Application to General Rational Algebraic Curve.

If the equation of the curve be written in the form

f(X, 2/)
s ^»+^-l+ /^n-2+--*+ /

W'2+ 'M'I+ ^0= 0

(where ur represents the sum of all the terms of the ?
,th degree),

then when made homogeneous by the introduction where neces-

sary of a proper, power of z we shall have

f(p, y> zy=un+un - 1z+unr 2z
2+ ...

+ Ujtn
- 2+ 1j£Zn

' 1+U0Z
n
,

^2fc ttn-i+2un-2^4-3wn.8^+...

+(n— 2)w
2
3n

“ 3+ (n — l)u
3
0n *,,2+7iuo0

n “ 1
,

and
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and therefore substituting in (3) and putting *=1, the equa-

tion of the tangent is 4 v > J „ 7 *i

7>f af
’** V '

** Xg^+P^+ttn_i+2ttn_s+3tt»_8+...

* +(•»— 2)»2+('W'— l)»i+wtt0=0 (4)

194. NORMAL.
Def. The normal at any pointtof a curve is a straight line

throkgh that point and perpendicular to the tangent to the

curve at that point.

Let the axes be assumed rectangular. The equation of the

normal may then be at once written down. For if the equa-

tion of the curve be y —f(x),

the tangent at (x, y) is Y—yj=^(X—x), .*

and the normal is therefore

(X—.)+<r—jogg-0.

If the equation of the curve be given in the form

fix, y)=0,
the equation of the tangent is

(X—*)g+(r—„)|-0,
and therefore that of the normal is

X—x Y—y
3f ~

3?
'

dx dy

Ex. 1. Consider the ellipse 1,

This requires z2 in the last term to make a homogeneous equation in x>

v, and z. We have then

Hence the equation of the tangent Is
'

x.^+r *«-*. 2*»o,
a> o*

where z is to be put = 1. Hence we get

^+^=1 for the tangent,

jLnifw, IlZJL for the normaL
x

and therefore
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A

Ex. 2. Take the general eqnation of a conic

a&+2hxy+by2+ 2^4?+ 2Jy+ Cos 0.

When made homogeneous this becomes

aa?+ 2hxy+b$p+ 2gxg+2Jys+cs^^0.

The equation of the tangent is therefore

X(ax+hy+g)+ Y(hx+by+f)+gx+fy+o*=0,

and that of the normal is t

X-x = Y-y
ax+hy+g kx+by+f

Ex. 3. Consider the curve 2=log Becn-
el a

Then ^=tan->
ax a

and the equations of the tangent aqd normal are respectively

y=tan^X—« ),
a

and (F“y)tan^+(X-j?)«0.

195. Iff{x> 2/)
= 0 and F(x, 3/)

= 0 be two curves intersecting

at the point x, y, their respective tangents at that point are

Xf»+Yfy+Zfg=0

and XF(e+ YFy+ZFz=0.

(Z is often written for z for the sake of symmetry.)

The angle at which these lines cut is

tan'

Hence if the curves touch fx\X%—fvlFv \

and if they cut orthogonally, fxFx+fvFy— 0.

%
Ex. If £+i>V —Rx+ iy)y the curves given by £ = constant, and by

tj *sconstant, !orm two families such that each member of the first set cuts

orthogonally each member of the second.

*fzFV-fvF*
fx^x "f"

fyFy

For by Art. 190,

t-

whence

dy , d£ dy
dx~dy 411

Wy 15x

S5 'fo+Ty Ty
°>

which is the condition that the tangents at the points of intersection

should include a right angle.
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196. If the form of a curve be given by the equations

*=m y~

the tangent at the point determined by the third variable t is

by Equation 1, Art 191, 'I - i ^ yt - v \

or X\fr\t)- Y<j>'(t)= -WW)-
Similarly by Art. 194 the corresponding normal is

X<j>\t)+ Y^Xt)=^)+#)W
Examples.

• »

1.

Find the equations of the tangents and normals at the point (x, y)
on each of the following cilrves :

—

(1) ar*+y*=c2. (5) fry+xyt^a*. *

(2) y
2=4aa?. (6) e^sin#.

(3) xy=P. (7) z3-3axy+y3=0.

(4) y=--ccoshf. (8)

2. Write down the equations of the tangents and normals to the curve

y(#
2+ a2)==CM?2 at the points where y= ?•

x v —

*

3. Pro\te that + +
g
= 1 touches the curve y= be~

*

at the point where the

curve crosses the axis of y.

4. Find where the tangent is parallel to the axis of x and where it is

perpendicular to that axis for the following cur /es :

—

(a) ax1 + 2hxy +• 6y
2= 1.

Wr-*=£
(y)

5. Find the tangent and normal at tfro point determined by 0 on

(a) The ellipse cos

sin 6)

(/3) The cycloid sin 0)\

y«a(]#-cos0)J

(y) The epicycloid x=A cos0-i?cos^0

y**A sin
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If cosa+y sin a touch the curve

prove that = (a cos a)™-1+(6 sin a)”1
-1

.

Hence write down the polar equation of the locus of the foot of the

perpendicular from the origin on the tangent to this curve.

Examine the cases of an ellipse and of a rectangular hyperbola.

7. Find the condition that the conics aaP+by2 —!, afaP+b'y*= 1 shall

cut orthogonally.

8. Prove that, if the axes be oblique and inclined at an angle <o, the

equation of the normal to y=f\x) at (#, y) is

(F-y)(cos6>+^)+(X-*)(l +cos <^)=0.

9. Show that the parabolas x2=fiy and y
2—2ax intersect upon the

Folium of Descartes a?+ ip=yZaxy ; and find the angles between each pair

at the points of intersection.

197. Tangents at thp Origin.

It will be shown by a general method in a subsequent article

(291) that in the case in which a curve, whose equation is

given in the rational algebraic form, passes through the origin,

the equation of the tangent or tangents at that point can be at

once written down by inspection
;
the rule being to equate to

zero the terms of lowest degree in the equation of the curve.

Ex. In the curve x*+y2 + ax+by=0, ax+by= 0 is the equation of the

tangent at the origin
;
and in the curve (x2 4-y

2
)
2=

a

2(x2-y2
\ x2-y2=0 is

the equation of a pair of tangents at the origin.

It is easy to deduce this result from the equation of the tangent

established in Chapter II. That equation is

Y-y~m(X—x) where

At the origin this becomes Y—mA\
where the limiting value or values of m are to be found.

*

Let the equation of the curve be arranged in homogeneous sets of

terms, and suppose the lowest set to be of the r* degree. The equation

may be written a? + J
/r+ +

.

. . a*
/»(^)

Dividing by and putting y=*mx, and then x=0 and y=0, the above

reduces to thb form /rW=0,
adequation which has r roots giving the directions in which the several

branches of the curve pass through the origin. If mh nh, tfij, ... m* be the

roots, the equations of tl&q several tangents are

ycstmix, y**nhv,
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These are all contained in the one equation

4?)-0i

and this is the result obtained by " equating to zero the term of lowest

degreS” in the equation of the curve, thus proving the rule.

Ex. Find the equations of the tangents at the origin in the following

curves :— (a) (x*+y2
)
2— a2a?- b2y\

08)

(y) Cy

Geometrical Results.

198. Cartesians. Intercepts.

From the equation Y—y =J^~(X— ai)

it is clear that the intercepts which the tangent cuts off from

the axes of x and y are respectively •
,

•-$ “d y~xv
dx

for these are respectively the values of X when F=0 and of

Y when X= 0.

Fig, 2j

Let PN, PT, PG be the ordinate, tangent, and normal to

the curve, and let PT make an angle yjr with the axis of ®;

then tan Let the tangent cut the axis of y in t, and

let OY,OY
1 be perpendiculars from 0, the origin, on the tan-

gent and normal. Then the above valupp of the intercepts are

also obvious from the figure.
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199. Subtangent, etc.

Def. !rhe line TN is called the subtangent and the line NG
is called the subnormal.

From the figure
^ .

Subtangent= TN=y cot t/»*

=

Subnormal=NG=y tam/r=sy^.*B-

Normal-PG =y sec =yJ\+\o^r—y^\j^(^^^ •

Tangent= TP =

y

cosec \Js
— ^a

,

n—=
, . tan yr

• 07=0/ COS \/r=
2/-* A

dy

d®

d®

Vl+tan2

^ ^1+(Wf
dy

OYt-oatHir- 0**!?.-

These and other results may of course also be obtained

analytically from the equation of the tangent.

Thus if the equation of the curve be given in the form

f(x,y)= 0

the tangent Xfx+ 7fy+Zfz=

0

makes intercepts —/*//* and —ftffy upon the co-ordinate axes,

and the perpendicular from the origin upon the tangent is

and indeed, any lengths or angles desired may be written down

by the ordinary methods and formulae of analytical geometry.

Ex. 1. For the chainette y =ccosh* we hare yi— sinli-,
• C 0

Hence * subtangent= ^ c coth
• Vi c

subnormal *= c sinh^ cosh
*

normAf >/l + yi
2
=*^, etc.



TANGENTS AND NORMALS. m
Ex. 2. In the general equation

show that if for a given abscissa each ordinate be divided by the

corresponding subtangent the algebraic sum of the resulting quotients

is constant.

If y& ... be the several ordinates and au sa ... the several sub-

tangents, * -(<*(£f-oitf),

hence, differentiating, = -«n

and Sr**yr
dx

200. Values of ete.
t •

Let P, Q be contiguous points on a curve. Let the co-

ordinates of P be (x, y) and of Q (x+Sx, y+Sy). Then the

perpendicularPR= Sx, and RQ= Sy. Let the arcAP measured

from some fixed point A on the curve be called s and the are

AQ=8+$8. Then arc PQ—fo. When Q travels along the

curve so as to come indefinite!; near to P, the arc PQ and the

chord PQ ultimately differ by a small quantity of higher order

than the arc PQ itself (Art. 34).
t

Hence, rejecting infinitesimals of order higher than the

second, we have

<58*= (chord PQ)i=(Sxi+Syi
),
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Similarly Z<£=i,

(
i+

S)'

©=>+©’
and in the same manner

@ =
*
1+@

If yfr be the angle which the tangent makes with the axis of

x we have as in Art. 37, .

, , , 7r. PP r , PP ,.&? <2®md»ho

and aa^=LtY chord PQ arc PQ & ds

Examples.

1. Find the length of the perpendicular from the origin on the tangent

at the point x, y of the curve at+yk =c*.
x_

2. Show that in the curve y=beP the subtangent is of constant length.

3. Show that in the curve by2
=(x-\ra'f the square of the subtangent

varies as the subnormal.

4. For the parabola y
2= 4ax, prove n

ds _ Ja+x
• rJw j.

j.2

Prove that for the ellipse ^~+£2
=l, ^ #=asin </>,

6. For the cycloid

7. In the curve

^=aVl'-Am^
a<p

x=avera 0 )
?

y=a(0+ 8in0)f’

ds
.
/2a

y=alogsec-,
CL

ds x ds • x j i

prove « ~-==sec -> cosec-, and x=ay.
ax a ay . a

8.°Show that the portion of the tangent to the curve

which is intercepted between the axes, is of constant length.

Find the area of the triangle formed by the axes and the tangent.
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9. Find for what value of n the length of the subnormal of the curve

j7y*^:a"+l is constant. Also for what value of n the area of the triangle

included between the axes and any tangent is constant.

10.

^Prove that for the catenary or chamette y=ccoshp the length of

the perpendicular from the foot of the ordinate on the tangent is of con*

stant length.

11. In the tractory

x—

prove that the portion of the tangent intercepted between the point of

contact and the axis of x is of constant length.

201. Polar Co-ordinates.

If the equation of the curve he referred to polar co-ordinates,

suppose 0 to he the pole and P, Q tjvo contiguous points on

the curve. Let the co-ordinates of P and Q he (r, 0) and

(r+dr, 0-\-S6) respectively. J^t be the perpendicular on

OQ, then NQ differs from Sr and NP from rSO by small quan-

tities of a higher order than SO (Art. 31). <

Let the arc measured from some fixed point A toP he called

a, and from A to Q, 8-f Then arc PQ= Ss. Hence, rejecting

infinitesimals of order higher than the second, we have

$8*= (chord PQ)S=(W i-J
>
.flr*)=(<S»’

!+rW),
and therefore

according as we divide by SsP, dr2, or <50? before proceeding to

the limit.
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202. Inclination of the Badins Vector to the Tangent.

Next, let p be the angle which the tangent at any point P
makes with the radius vector, then

. ,
d9 dr .

,
rd9

tan p= cos <p=w
For, with the figure of the preceding article, since, when Q has

moved along the curve so ne&r to P that Q and P may be con-

sidered as ultimately coincident, QP becomes the tangent at P
and the angles OQT and ,OPT are each of them ultimately

equal to <p, and

tan<p=Lt tenNQP=Lt^=Lt^=r(W-,

cos <p = Lb cosNQP= =Lt-KQr chord QP arcQP Sa da

sin p—Lt sin NQP=,Lt
NP

chord QP
= Lt

'NP _r/w ,

arc QP Sa

rdO

ds

Ex. Find the angle <p in the case of the curve r"=a"sec(re(?+a), and

prove that this curve is intersected by the curve r"= 6"sec(«fl

+

j3) at an

angle which is independent of a and b. [L 0. S., 1886.]

Taking the logarithmic differential,
a

.
J^-tanM+«),

whence ~ - <£

=

n0+ a.
A

III a similar manner for the second curve

r-f-nfi+fi,

<P' being the angle which the radius vector makes with the tangent to the

second curve. Hence the angle between the tangents at the point of

intersection is a ~ /3.

203. Polar Spbtangent, Subnormal, etc.

Let OF be the perpendicular from the origin on the

tangent at P. Let TOt be drawn through 0 perpendicular to

OP add cutting the tangent in T and the normal in t. Then

OT is called the “ Polar Subtangent ” and Ot is called the

"Polar Subnormal.”

It is dear that 0T=0P tan0=r®^,.

and that Gt**OP cotip=

..(1)

•(2)
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204. It is often found convenient when using polar co-

ordinates to write — for r, and therefore —J- ~ for With
u u2 dO dO

this notation. Polar Subtaqgent=

r

2

^= —

Ex. In the conic
#

lu— 1 + e cos 0

we have l— - e sin 0^?- •

du

Thus the length of the polar subtangent is Ije sin 0.

Also, from the figure, the angular co-ordinate of its extremity ia 0- ir
-

2
lienee the co-ordinates of T(rl9 ft) satisfy the equation

rx=He sin
(i[ + &)-

The locus of the extremity is therefore

# lu=ecoa0;
that is, the directrix corresponding to that focus which is taken as origin.

205. Perpendicular from Pole on Tangent, etc.

Let OY=p and PY—t.
Then p=r sin 0,

and therefore

therefore
1 _1 ^ Ifdry
33* 1* Add)

-“’+Q
Similarly i=rcos0;

therefore i= isec?d>

—

i(l + tan2<A)
r r r

a)

(2)
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therefore

Ex. In the spiral

we have

whence

CHAPTER VH

r—a

=U2+U*

62

W-T
au—l- 0

“2
,

\du)
#

and therefore, squaring and adding,

p=l-20-*+fl-‘+40-«

Thus, corresponding to 6= ± 1
,
we have

=4 and

Examples. *

1. In the equiangular spiral r=ae^cota
,
prove

dr ,
-
7-= cos a and »=rsma.
as

2. For the involute of a circle, viz

,

p_ Jr*-a1
xaV— COS >

plove COS <£= -•

r

2a
3. In the parabola — = 1 - cos 0, prove the following results :

—

T

(a)

(ffl *>=
0wn —

(y) p
2 =ar.

(5) Polar subtangent» 2a cosec 6*

4. For the cardioide r=a(l - cos 0), prove

0
(a) <£=

2

(/J) i»-2asin8
'0

2a(y) 2>’=

0
““2

(5) ^qlar subtangent=2a a*

cos -
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206. Polar Equation of the Tangent

Let the polar co-ordinates of the point of contact be (~, a\

;

and let U' be the value of^ for the curve at that point

The eauation of any ftraight line may be written in the

form u=

A

cos(0

—

a)+Ji sin(0— a), (1)

A and B being the arbitrary constants. Let this straight line

represent the required tangent.

By differentiation

^3= -A sin(0— «) +Bcos(0-a).. .(2)

j

Now, since the tangent touches the curve, the value of ?
aw
d9

at the point of contacffc is the same for the curve and for the

tangent. Hence, putting 9=

a

in equations (1) and (2), we

have U=A and TJ'—B,

whence the required equation will be

u=U cos(0—«)+ ETsin(0— a) (3)

207. Polar Equation of the Normal. «

The aquation of any straight line at right angles to the

tangent given by equation (3) of the preceding article may be

written in the form »

Cu= Woos(9—a)— U sin(0— o),

G being an arbitrary constant.

This equation is to be satisfied by u= U, 9=

a

for the point

of contact of the tangent; therefore substituting we have

GU=U', .

whence the required equation of tL j normal is

Zw= U'cos(0— a)— U sin(9— a).
U • ’

Ex. Find the polar equation of the normal at the poini 0* 2a on the

cardioide r=o(l+cos 0), and show that three normals can be drawn frdin a

given point to a cardioide.

Here
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Bence

and

sin Set)

V sin So
ctana.

(J l+cos2a

Hence the equation becomes

a sin 2a . w=tan a cos(0- 2a) -sin(0- 2a),

or r sin(3a - 0)— g(f£n 3a -f sin a) (1)

If we write x and y for r cos 9 and r sin 9 and t for tan a, this may be,

written (3< (1 - 3fl)y=®{(3t-

1

3
)+ <( 1+ <*)}>

or *V-3*2y+*(2a-&i;)+y==0, (2)

giving a cubic to determine the values of tan a corresponding to the three

normals which pass through & given point (x, y).
• *

208. Class of a Curve of the 11
th degree. •

Dep, The number of tangents which cam b& rfxg/iim. frrvm. n

given poiM to a rMTona^dtaeBraw curve ia called its Glass, t

"Let the equation of'tEe curvebe fix, y)= 0. The equation

of the tangent at the point (x, y) is

where z is to be put equal to unity after the differentiation is

performed. If this pass through the point h
,
k we have

This is an equation of the (n— l)
tt degree in x and y and

represents a curve of the (n—1
)
,h degree passing through the

points of contact of the tangents drawn from the point (h, k) to
the curve fix, y)= 0. These two curves have n(n- 1) points

of intersection, and therefore there are in general n(n—l)
points of contact corresponding to n(n— 1) tangents, real or
imaginary, which can be drawn from a given point to a curve

6f tiie degree.*

It appears then that if the degree of a curve ben, Us class

is n(n— 1) ; for example, the classes of a conic, a cubic, a
quartie are the second, sixth, twelfth respectively.

* Poncelot, Annales de Gcrgonne, voL VIII, ; Bobillier, ibid. voL ^TVt
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). Number of Normals which can be drawn to a dure to

pass through \ given point

Let h, k be the point through which the normals are to pass.

The equation of the normal to the curve fix, y)=0 at the
• jr „ tt _

.

point (x, y) is

If this pass through h, k,

(h-x)&=(k-y)&.

This equation is of the vP* degree in x and y and represents a
curve which goes through the feet of all normals which can be

drawn from the point h, h to the curve. Combining this with

fix, y)

—

0
, which is also of the rP degree, it appears that there

are n2 points of intersection, and that therefore there can be n2

normals, real or imaginary, drawn to.a given curve to pass

through a given point.
*

For example, if the curve be an ellipse, »= 2, and the number of normals
*.2

is 4. Let -
9+\ 0

—l be the equation of the curve, then
or oz

is the curve which, with the ellipse, determines the feet of the normals

drawn from the point (A, k). This is a rectangular hyperbola which

passes through the origin and through the point (h,
l).

The student should consider how it is that an infinite number of normals

can be drawn from the centre of a circle to the circumference.

210. The curves

(h-x^+ik-y)#-- .(1)

and (ft -(2)

on which lie the points of conta* i of tangents and the feet of

the normals respectively, which can be drawn to the curve

fix, y)=0 so as to pass through the point (A, k), are the same

for the curve fix, y)=a. And, as equations (l)*and (2) do not

depend on a, they represent the loci of the points of contact

and of thefeet of the normals respectively for all values of* a,

that is, for all members of the family of curves obtained by
varying a in fix, y)=>a in any manner. * •

U SL
dx Zy
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211. Polar Carres.

The curve ^^+^^+*^=0
ox ay oz

is called the “First Polar Curve ”
of the point h, h with regard

to the curve f(x, y) = 0; z being a linear unit introduced as

explained previously to make fix , y) homogeneous in x, y> zt

and put equal to unity after Jthe differentiation is performed.

As this is a curve of the (w— l)
th degree it is clear that the

first polar of a point with regard to a conic is a straight line
,

the first polar with regard to a cubic is a conic, and so on.

The first polar of the origin is given by

If the curve be put in' the farm'

^n+ ^n-l+^n-2+...+^2+^1+^= 0,

the first polar of the oiigin is

un _ i+ 2/wn _ 2 H~3wn - s+ • • • + (n— l)%i

+

nuo= 0.

In the particular case of the conic

^2+Ul+ /M'0= °

the polar line of the origin has for its equation

u
1
+2u0= 0.

For the cubic u3+

u

2+

+

u
0= 0

the polar conic of the origin is

'U
2
+2m

1
+3h/

0= 0.

Examples.

1. Through the point A, k tangents are drawn to the curve

1 ;

show that the points of contact lie on a conic.

2. If from any point P normals be drawn to the curve whose equation

is y
m^maxn

y
show that the feet of the normals lie on a conic, of which the

straight line joining P to the origin is a diameter. Find the position of

the axes of this conic.

3. The points of contact of tangents from the point A, k to the curve

x*+y**=3axy lie on a conic which passes through the origin.

4. Through a given point A, k tangents are drawn to curves where the

ordinate varies as the cube of the abscissa. Show that the locus of the

points of contact is the rectangular hyperbola
y

£zy*fjfo?-3Ay=0,

and the locus of the remaining point in which each tangent cuts the curve

is the rectangular hyperbola
ay-4>fo?+3Ay«*0.
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212. The p, r or Pedal Equation of a Curve.

In many curves the delation between the perpendicular on

the tangent and the radius vector of the point of contact from

some given point is very simple, and when known it frequently

forms a very useful equation to the curve
; especially indeed in

investigating certain Statical and Dynamical properties.

^ 213. Pedal Equation deduced from Cartesian.

Suppose the curve to be given by its Cartesian Equation

and the origin to be taken at the point with regard to which

it is required to find the Pedal Equation of the curve. Let x
9 y

be the co-ordinates ofany point on the curve
;
then, if F(x, j/)=0

be the equation of the curve, that of the tangent is

YFy+zFg 9= 0,

where z is as usual to be put equal unity after the differentia-

tion is performed. *
#

Ifp be the perpendicular from the origin on the tangent at

v*. y) we have (1)

Also r2= #2
+2/

2
> (2)

and F(x,y)= 0 (3)

If x and y be eliminated between these three equations the

required*relation between p and r is obtained.

Ex. If F(x> y)=0 be P—4

II+lift

we have

and *®+ya=r*

;

1 1 ,

If & 1

therefore
1*

1 1 =0,
a? v?

,

it 1. f*
I

p2

This result may be at once obtained by eliminating CD from the

equations

and CD.p=*ab>

CP and CD being conjugate semi-diameters.
E.D.C. l •
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214. Pedal Equation deduced from Polar.

Let the carve be given in Polar co-ordinates and the pole be

taken at the point with regard to which it is required to find

the pedal equation of the curve. Let r, 6 be the co-ordinates

of any point on the curve, andp the length of the perpendicular

from the pole on the tangent at r, $. If

F(r,d)=

0

.(1)

be the equation of the curve, then we have (see Fig. 25)

p=r ainf (2)

and tan^=r^ .(3)

Eliminate 6 and 0 between the equations (1), (2), (3), and

the required equation between p and r will be obtained.

Ex. Given rm=am8inwi0, Required its pedal equation.

Taking logarithms and differentiating,

m dr
__

cos
.

c
r dd~~ ^sin mO 3

therefore cot <£= cot 7710, or <t>=md.

Again, p—r sin
<f>

sb r sin tw0

rm- r
'cP'>

therefore
jjm+l

The following special cases of this example are worthy of notice, and

will furnish exercises for the student.

Value
of m.

Equation. Name.
Pedal

Equation.

-2 T^sin 20+oa=O Rectangular Hyperbola n

-1 r sin 04*0=0 Straight line p—a

-* — =- 1 — cos 0
r

Parabola or

* 1
'

1II• Cardioide jp
2a=r3

V

1

6

i
—

r=asin 0 Circle

2 r3 =«a*Btu20 Lenmiscate of Bernoulli IIX
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Example

1. Show geometrically that the pedal equation of a circle with regard

to a point on the circumference ia pd**r*, d being the diameter of the

circle,,

2. Show that the pedal equation of the ellipse

with regard to a focus is
V 2o •

3, Show that the pedal equation of the parabola y*=4a# with regard

to its vertex is aXr2 -jo2)
2=p\r1+4a%o2+ 4a*).

4. Show that the pedal equation of the curve isof the form p**mr
where m is a constant.

6. Show that the pedal equation of the tetracuspidal hypocydoid

is ra+ 3pJ=aa
. #

6. Show that for the epicycloid given by

#«=(«+ h)cos d~b cos-^6

y=(a+ 6)sin 0-b
b

*>=(«+ 2&)sin|g0; ^”^^5 p=(a+26)sin-^|g;

and that the pedal equation is

215. is found useful to remember the following pedal

equations.

(1) Circle (point on circumference),^^ pd=*r2.
n _ i_ /r. \ „o

(2) Parabola (focus), p2=ar.

<*> f^-***6*-

; (5) Equiangular Spiral r*»aeflcota (pole)jg p=rsin a.

(6) General class rm=a”*sinV/< /
),' la™=rm+1.

^7) General c^^^fepi- and hy^o-ayqloidf jf^AiP+B.

Ctoves.
,

216. Def. Ifa perpendicular be drawnfrom afioced point

on a variable tangent to a curve, the locus of the foot of the

perpendicular ie called the “ First Posiwb Pedal” of the

:original curve with regard to the given pci%.
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To find the first positive pedal with regard to the origin of
any curve whose Cartesian Equation is given.

Let F(x, y)=0 (1)

be the equation of the curve.

Suppose X cos a+ Ts\rxa=p touches this curve.

By comparison of this equation with

we have

vdF <dF dF A
•^aF+V'*"0

dF . dF dF
dx dy dz .-= - = A, say-

cos a sm a —p ..(2)

If x, y, X be eliminated between the four equations (1) and

(2) a result will remainwhich depends on p and a only. And
since p, a are the polar co-orflinates of the foot of the perpen-

dicular, if r be written for p and 0 for 'a, the polar equation of

the locus required will be obtained.

Ex. Find the first positive pedal of the curve

Axm+Bym~l.
The tangent is AXa?*~l+BYym~1= 1.

Compare this with A” cos a+ Fain a=jo,

^™-1== cosa and ^ ,»_I=sin«

P P

Hence

Therefore the polar equation of the locus required is

A”- 1
J3
m-1

217. Tofind the Pedal with regard to the Pole of any curve

whose Polar Equation is given.

Let F(r, 0)=O (1)

be the equation of the curve.

Let r\ & be the polar co-ordinates of the point Y, which is
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the foot of the perpendicular OT drawn from the pole <m a
tangent Let OA be the initial line. Then

6=A()P=aCy+ YdP
•

-O'+f-*;. (2)

also
, dO

»
(3)

and r'=r sin^, 1

or *1-n
u-
+

to (Art. 205). ....
•

(4)

If r, $, <f>
be eliminated from equations 1, 2, 3, and 4, there

will remain an equation in r', O'. The dashes may then be

dropped and the required equation wilf be obtained.

Ex. To find the equation of the first?positive pedal of the curve

• Tm=&mcos m9.

Taking the logarithmic differential *

m
^
r— — m tan mO ;

r d&
cot <j>— - tan md ;therefore

therefore

But

therefore #

Again

O'

z

0=& -mOy or 6=
m + 1

r'^r sin cf>—r cos md
j_

= a cosmm0 . cos mO
m&~acoa m
m+\

Hence the equation of the pedal curve is

_ 7ft -a «m+1cos^j-jo.

218. Def. If there be 'a series of curves which we may
designate as

A, ^2» ••• •••

such that each is the first positive pedal curve of the one

which immediately precedes it
;
theh Av A# etc., &re respec-

tively called the second, third, etc., positive pedals of A. Also,

any one of this series of curves may be regarded as th^ original

curve, e>g., A8 ;
then A% is called thefirst^negative pedal ofA#

A
x the second negative pedal, and so on*

A *
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Ez; l< Find the positive pedal crf

rw=aamcosrnA
It has been shown that the first positive pedal is

r^isa^cosmi#,

where ^1“ m
1+m

Similarly the second positive pedal is

rw,a=^w2COS ma0,

where m3
= JfiL
1+% 1 + 20*’

and generally the jP positive ppdal is

rmk =.

a

m*cosmk6f

m
where w*=

1

Ex. 2. Find the k^ negative pedal of the curve

^rsa^cos mO.

We have shown above that rm=a*lcos is the V* positive pedal of the

curve rl,*awcosfi0, provided m
~Y^kn

This gives

Hence the k^ negative pedal of rm=

o

mcos mO is

rn—ancosnO.

where
1 -km

Examples.
i

1. Show that the first positive pedal of a circle with regard to any point

is a Limagon (r=a+Z> cos 0), which becomes a Cardioide {r=a(l+cos 0)}

when the point is on the circumference.

2. Show that the first positive pedal of a central conic with regard to

the centre is of the form r*=A+B co&2$> which becomes a Bernoulli’s

Lemniscate (r*=a*cos20) when the couic is a rectangular hyperbola.

3. Show that the #rst positive pedal of the parabola y
2—Aax with

regard to the vertex is the cissoid

x(x?+y*)+ay2*?0.

4* Show that the first positive pedal of the curve

u5+y8«a5

is

5. Show that the first positive pedal of the curve v

is
’ r=« ±a sin 0cos 0.

Also that the tangential polar equation of the curve is

IP-? “sin 2^.
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6. Show that the first positive pedal of the eurve

af*y* jsaum+,,

is tn^"coa"» rifft
m"*. »"

7.

#
Show that the fourth negative pedal of the cardioide r«a(l4*ooB 0)

is a parabola.

8. Show that the fourth and fifth positive pedals of the eurve
3 q 3

r^cos-# ;; a9

are respectively a rectangular hyperbola and a Lemniscate.

9. Show that the n** positive pedal of the spiral r~a^°°ta is

r=a sin"a<?
i(^-a^)cot a Boot a

219. It is useful to remember the following pedals.

& Original Curve.

(1.) Circle,

(2.) Circle,

(3.) Parabola,

(4) Parabola,

(5.) Central conic,

(6.) Central conic,

(7.) Rectangular hyperbola,

(8.) Equiangular spiral,

The Given Point. Name of Pedal.

point on circumference, Cardioide.

any pouft, Lima^on.

focus, Tangent at vertex,

vertex, Ci&soid.

focus. Auxiliary circle,

centre, r2—a2cosiB±t^in2#.

!

Lemniscate of

Bernoulli.

pol e, Equiangular spiral.

centre,

(9.) rm=amcoarn6, pole, rm+1=om+1cosw+

1

220. #
Tangential-Polar, or p, yfr Equation of a Curve.

If yfr be the angle which the tangent to a curve makes with

any fixed straight line, the l elation between p and yfs often

forms a very simple and elegdht equation of the curve. This

relation has been called by Dr. Ferrers the Tangential-Polar

Equation.

The p, yjr equation may be deduced at pnce from the equa-

tion of the first positive pedal.

If r=/(0) be the pedal curve, then, since \^=—+0 (see Fig.

26, Art. 217), the equation between p and \fs is clearly

Ex. 1. Thep9 ir equation of Ax*+By2^l is

Ex. 2. The pedal of ?£U»1 h-cos 6 with regard to the origin is r cob 0ma,

and therefore itsp, yjr equation is p sin^=*a.
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221. Relations between p, t, p, etc.

Let PY, QY' be tangents at the contiguous points P, Q on

the curve, and let OY, OY' be perpendiculats from 0 upon

these tangents. Let OZ be drawn at right angles to Y'Y
produced. Let the tangents at P and Q intersect at T, and let

them cut the initial line OX in 22 and S. Let the normals at

P and Q intersect in 0. «

Let the co-ordinates of P be (r, 9), and let those of Q be

(r + Sr, 6 + 89). Let OY= p, OY' = p+Sp, P&X =
QtiX= yfr+8\!s. Then SIR, pGq, Y&F each = S\fr. Let

PY—t, and arc PQ—Ss. Let OY' cut TY in V; then, since

OP~V is a right angle and YOV=8\fs a small angle of the first

order, OV differs from OY by a quantity of higher order than

the first (Art. 32).

therefore

Hence VY' differs from Sp by a quantity of higher order

than Sp, and TY' tan S\}s= VY',

VY"
:

Sxfr’

and proceeding to the limit (1)

Similarly, ifPC be called p we have

arc PQ=PG . 8\fr,

neglecting infinitesimals of higher order than Syjr, therefore

and proceeding to the limit,

(2)
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Again St= Y'Q— YP •

=(7T+TQ)-(YV+ VT-PT)
=(PT+ TQ)+(Y'T- VT)— YV.

Now YVssp tan S\fr,

and remembering that when <5i/e is an infinitesimal of the first

order, VT and Y’T, PT+TQ and ja, tan S\[f and each

differ by quantities of order higher,than the first, we have, upon

dividing by S\fr and proceeding to the limit,

dt _ da

or by and (*> (3)

222. Perpendicular on Tangent to Pedal.

From the same figure it is clear that since YO Y‘= Y'TY',

the points 0, Y, Y', T are concyclic, and therefore

0YZ=ir-0?Y'=0TY'
;
and the triangles OYZ and OTY'

arc similar. Therefore

And in the limit when Q comes into coincidence with P, Y

*

comes into coincidence with F, and the limiting position of

YY is the tangent to the pedal curve. Let the perpendicular

on the tangent at F to the pedal curve be called pv then the

above ratio becomes — =^,
p r

or px
r=p2

.

223. Circle on Badius Vector for Diameter touches Pedal.

It is clear also from the figure of Art. 221 that the circle on

the radius vector as diameter touches the first positive pedal of

the curve. For OT is in the limit a radius vector ; and the

circle on OT as diameter passing through F and Y

\

two con-

tiguous points on the pcd&l, must in the limit have the same

tangent at Fas the pedal curve, and must therefore touch it.

224.

Pedal Equation of Pedal Curve.

Let r=f(p) be the pedal equation of a given curve. Then,

since pt
r=p2

, we have px
and therefore, writing r for j>

and p for pv the pedal equation of the first positive pedal

curve isp=£~
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•Ex. The first positive pedal of the rectangular hyperbola r

P
r* r*

r

which is the p, r equation of Bernoulli’s Lemniscate, as is also obVious

from Art* 218.

Example®*.

1. Write down the pedal equations of the first positive pedals of the

curves given in the table of Art*, 214

2. From the origin 0 is drawn a perpendicular OPi to the tangent at P9

similarly 0P2 is drawn perpendicular to the tangent at Pi to the locus of

Piy and so on. Show that the figure PP\P2 ...is equiangular, but cannot

be equilateral. [Oxfobd, 1888.]

3. Show that the Jb
ih pedalj positive or negative, of^=/(r) is

225. We may also prove the results of Art. 221 as follows :

—

Let the tangent P
X
T make an angle yfs with the initial dine.

Then the perpendicular makes an angle ~ with the

same line. Let OY—p. Let PjP2
be the normal, and P2 its

pqint of intersection with the normal at the contiguous point*

Q. Let 0YX be the perpendicular from 0 upon the normal.

Call this pv Let PjPs be drawn at right angles to PjP* and

let the length of OF^the perpendicular upon it from 0, be jpr
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The equation of PjT is dearly

cos a+y sin a (1)

The contiguous tangent at Q has for its equation

* p+Sp=x cos(«+ <Sa)+y siri{o

+

fa) (2)

Hence subtracting and proceeding to the limit it appears that

—ajsino-fycosa .(3)

is a straight line passing through the point of intersection

of (1) and (2) ;
also being perpendicular to (1) it is the equation

of the normal PX
P2.

Similarly
(l
2p_

da?~
—x cos a—

y

sin a •(*)

represents a straight line through the point of intersection

of two contiguous positions of the line P
X
P2 and perpen-

dicular to PX
P2,

viz., the line PjPj/and so on for further

differentiations.

From this it is obvious that

Hence

and

OY dP since^-1-°*
1 da ™ da~ *

UX
*-dJ~dyp’

eV\

t—P Y— (—* Iir ~dy’

P-PJP,-OY+OYt-p+£fc
226. Tangential Equation of a Curve.

Def. The tangential equation of a curve is the condition

that the line Ix+m/y-^nsSi way teudLthe curve.

Method 1. Let F(x, y) =0 be the curve, then the tangent at

x, y is fFj'f 1̂= 0.

Comparing this with IX+mF+«= 0.

l m n
say.

If x, y, \ be eliminated between these equations, and

F(x, y)s»0, or lx+my+n=e0, a relation between l,m,n will

result This is the equation required.
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Method 2. We may also proceed thus. Eliminate y between

F(x, yb=0 and lx+my+n=s 0; we obtain aa. equationjn x,

my <f>(x)=0. Forjangency this equation must fraye a pairof
equal roots. The condition'for this will be found by elimipat-

ing x between = 0 and <tf(x)= 0.

In following this method, instead of eliminating y it is often

better to make a homogeneous equation between F(x, y)= 0 and

Zaj+my+ii=0, and then express that the resulting equation

for the ratio y : x has a pair,of equal roots.

Ex. Find the tangential equation of the conic

ax2+ 2hxy+ by 2+ 2gx+ 2fy+ c= 0.

The first process gives us

• ^
hx+by+f=-griy %

• \
g*+fy+c=2n-

Also lx+ my+n~0.

The eliminant from these four equations is

a, 4, g, l

4, b
9 f, m

\g, f, c, n ’

ly TlTly n, 0

which may be written

Al
2+Bm2+ Cn2+ 2Fmn 4- 2Gnl+2/i7?ri=0,

where Ay B, C9 ... are the co-factors of the determinant

a, h, g
h, b, f
9, f, o

Inversion. .

227. Def. Let 0 be the pole, and suppose any point P be

given
;
then if a second point Q be taken on OP, or OP

produced, such that OP. OQ— constant, h2 say, then Q is said

to be the inverse of the 'point P with respect to a circle of

radius k and centre 0, (or shortly, with respect to 0).

If the point P move in any given manner, the path of Q
4s sdid to be inverse to the path ofP. If (r, 6) be the polar

co-ordinates of the point P, and (?•', 6) those of the inverse
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point* Qt then f/s&*. Hence, if the locus ofP be f(r, 0)=O,

that of Q will be/(~-, 0^=0.

For example, the carves f**=a*cos m^and r“eos m6=>am are inverse to

each* other with regard to a circle of radius a.

228. Again, if (x, y) be the Cartesian co-ordinates of P, and

(as', y
1

) those of Q, then .

as'a ic
1 a

,y cos $x=r cos 0=— cos 6=/r- ,

T T

and similarly 2/=^
Hence, if the locus ofP be given in Cartesians as

F(x, y)=0,
the locus of Q will be »

jr(

W+y2 * x2+y2/*

Ex. The inverse of the straight line with regard to a circle of radius

lPx
^ and centre at the origin is -j-^a=a,

or **+y*»=*tf,

a circle which touches the axis of y at the origin.

• Examples.

1 . Show that the inverse of the parabola y*— 4ax with regard to a circle

whose centre is at the origin and radius the semi-latus rectum is the pedal

of the parabola y
2+Aax= 0 with regard to the vertex.

2. Show that the inverse of the conic M3+Wi+tt0=0 with regard to the

origin is the quartic curve

k*u2+ khi^x*+y2
)+v^x1+y*f— 0.

3. Show that the inverse of the general curve of the 71
th degree, viz.,

m»

+

w»ri+ + . . . + Mi + Ho=»0,

with regard to the origin is

where rB—xP+y2*
4. Show that the inverse of a conic witji regard to the focus is a Lima*

9011 (Equation r=a+b cos 0), which becomes a cardioide if the conic be a

parabola. 9

5. Show that the Equation of the inverse of a conic with regard to the

centre is of the form 2?cos 20, which becomes a Lemniscate of

Bernoulli if the conic be a rectangular hyperbola.
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229. Tangents to Curve and Inverse inclined to Radius

Vector at Supplementary Angles

If P, P' be two contiguous points on a curve, and Q, Qf the

inverse points, then, since OP . OQ—OF . OQf. the points P,P/

,

Q are concyclic
; "and smceTtheTangles OPT and QQfP are

therefore supplementary, it follows that in the limit when F

ultimately coincides with P and Q' with Qt the tangents at P
and Q’make supplementary angles with OPQ.
The ultimate ratio of corresponding elementary arcs, viz.,

ds TxPF_ rJOP OP OP.OQ k* r2

ds'~ QQ'~ OQ'~OQ- OQ2 =

230. It follows from the preceding article that when two

curves intersect, their inverses intersect at the same angle
;
and

as particular cases, if two curves touch, their inverses touch,

and if the original curves cut orthogonally their inverses cut

orthogonally.

Ex. 1. It is an obvious property of two confoc&l and co-axial parabolas

whose concavities are turned in opposite directions that they cut at right

angles. By inverting this proposition, the focus being the pole of inver-

sion, it is clear that the curves which cut orthogonally each member of

the family of cardioides r=a(1 -f cos 6) found by giving different values to

a, are also cardioides.

Ex. 2. Show by inverting a conic with regard to its focus that the circle

cos a)x+l sina.y

touches the Limagon r~l+le cos 9 at the point given by 9—a.

231. If P, P/
be any two points, and Q, Q' their inverse

points, then cas before (Art. 229) the triangles OPF, OQ'Q are

similar and
PF 0P_ W
QQ~OQ[~ OQ.OQ’’

Thus
QQ'

OQ . OQT
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Ex* 1. If a, 6, <3 be points in a straight line in the order indicated, then

db+bc^ac.

Suppose A, By C to be the inverse points of o, 6, o with regard to any
point 0. Then 0, A, B, C are concyclic and

AP
. M BO A<7M . £9 __ IS

0A . OB+ OBTqG“ 0A

.

whence 00 . A2?+0A . BC=*0B . AC,

the result known as Ptolemy's Theorem.

Ex. 2. If 0, A, 2?, 0 ... «/*, K be points on a circle, prove

AB .BO,
OA . OtirHSTOC,

,
JK _ AK

+ 0J ,0K~0A.0K'
[Math. Tripos, 1890.]

T

232. *Mechanical"Constraction of the Inverse of a Curve.

In the accompanying figure AC, CB% BQ, QA, PA, PB is a

systefn of freely jointed rods, of which AC=BC, and

AQ=QB=BP=PA.
At P and Q sockets are placed to carry tracing pencils. A pin

fixes 0 to the drawing board. The system is then movable

about (7. It is clear from elementary geometry that C, Q, P
are in a straight line, and that

CP.CQmCA%-AQ\
and is therefore constant. Hence whatever curve P is made

to trace out, Q will trace out its inverse

,

the point O being the

pole of inversion. *
.

In the figure P is represented as tracing a straight line^ in

which case Q will trace an arc of a circlet
as shown in Art. 228.

Peaucellier has utilized this construction for the conversion

of circular into rectilinear motion.



176 CHAPTER YU

Polar Reciprocals.
»

233. Polar Reciprocal of a Carve with regard to a given Circle.

Def. If OY be the perpendicular from the pole upon the

tangent to a given curve, and if a point Z be taken on OF
or OF produced such that OY.OZ is constant (

= &2 say), the

locus ofZ is called the polar reciprocal of the given curve with
regard to a circle of radius 1c and centre at 0.

From the definition it is obvious that this curve is the
inverse of the first positive pedal curve, and therefore its

equation can at once be found.

Ex. Polar reciprocal of an ellipse with regard to its centre.

For the ellipse ^+|?=1,

the condition thatp=x cos a+y sin a touches the curve is

p
2~a2cos2a + 62sin2a.

Hence'the polar equation of the pedal with regard to the origin is

r*=

a

2cos20 4- 62sin20.

Again, the inverse of this curve is

^=

a

2cos26+

&

2ain -0, 9

or * a2a?+b2
y
2=k\

which is therefore the equation of the polar reciprocal of the ellipse with
regard to a circle with centre at the origin and radius lc.

234. The method may therefore be stated thus

First find the condition that p—x cos a+y sin a will touch

the given curve. Then write
^

for p and 6 for a in that

condition. The result is the required polar reciprocal with

regard to a circle of radius k and centre at the origin.

235. Polar Reciprocal with regard to a given Conic.

Def. If $=0 be any curve and Z7=0 a given conic, the

locus of the poles with regard to U of tangents to S is called

the Polar Reciprocal of the cuwe 8 with regard to the conic U.

Let the equation of a tangent to 8 be

j5=JTcosa+Fsin a,
*

and the condition of tangency
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If x, y be the pole of this tangent with regard to Um0
, the

tangent must be coincident with the polar

XUa+ YUy-^-ZUt— 0 ;

„ • . cos a Ua sin a Uy
therefore ——= —jr, ——=—7

f-P Uz p U,

„ 1 u*+ ul uu
Hence -^ -^and tan a=^
Hence the equation of the Polar Reciprocal is

For further information on the subject of reciprocal polars

and the methods of reciprocation tfce student is referred to

Dr. Salmon’s Treatise on Conic Sections, chap. XV.

EXAMPLES.

1 . If the tangent at xv yx
to the curve a? + y* = a8 meet the curve

again in (X,
Y ), show that

X/x
1
+ Y/y^-l.

Illustrate the result by means of a figure. [Oxford, 1889.]

2. In the four-cusped hypocycloid

x%+yi=cfl,

show that if x— a cos8a then y = a sin8a,

and that the equation of the tangent at the point determined by a is

x sin a + y cos a = a sin a cos a.

Hence show that the locus of intersection of tangents at right angles

2

to one another is r2= - cos220.

3 . In the semicubical parabola w*9 - xs the tangent at any point P
cuts the axis of y in M and the cur * e in Q. 0 is the origin and N
the foot of the ordinate of P. Prove that MN and OQ are equally

inclined to the axis of x.
• ^

4. At any point of a curve where the ordinate varies as the cu^e

of the abscissa, a tangent is drawn ;
where it cuts the curve another

tangent is drawn ; where this cuts the curve a third is drawn, and so

on. Prove that the abscissae of the points*of contact form a geo-

metrical progression, and also the ordinates.

B.D.CI ac * •
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5. Ifpx
andpa be the perpendiculars from the origin on the tangent

and normal respectively at the point (x, y), and if| prove

that p1
=xsin#-ycosfi

and p2
=xcoat// + y sin tf/.

Hence prove that pa =
<

~j-

6. The tangent at a point P of the cissoid y\a -x)=soP meets the

curve again in Q and the tangent at Q meets the curve again in R.

If 0 be the origin, prove that*

cot ROQ - cot POQ» \ cot FOR. [Oxford, 1885.]

7. The curve a? + y*— 3axy is cut* in the points P, Q,
other than

the origin by two lines drawn through the origin which are harmonic

conjugates of the axes. Prove that the tangents at P, Q will inter-

sect on the curve.
c

[Oxford, 1890.]

8. Show that, if the curves r=J{9), r— F(d) intersect at (r, 0), the

angle between their tangents at the point of intersection is

tan-iM-ZWffl.
F\0)f{0) + F{d)f(0)

9. Prove that the locus of the extremity of the polar subtangent

of the curve n +f(0) = 0 is u=/'Q +

10. Prove that the locus of the extremity of the polar subnormal

of the curve r ==f(0

)

is r =*f(o -

Hence show that the locus of the extremity of the polar subnormal

In the equiangular spiral r = aemQ is another equiangular spiral.

11. In the curve

Q
1 + tang

rtfm + n tan-

the locus of the extremity of the polar stibtangent is a cardioide.

[Professor Wolstenholme.]

12. If the normals at the points (rv $x), (r
2,
9
%),

(r
3,
0
8)

on the

cardioide r = a(l + cos 0) be concurrent, show that

tan^ + tan + tan + 3 tan ^ tan ^ tan ^= 0.
c 2 2 2 2 2 2

[Oxford, 1890.]

13. If in the last question r
x + r

2 + r8 2a, show that the locus of

the point of concourse of the normals is a circle passing through the

pole.
,

[Oxford, 1886.]
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14. Show that the locus of intersection of’the normals at the ends

of a focal choni^f a cardioide is a circle.

15 Show wHR tangents at the ends of a focal chord of the

cardioide r = a(l + cos 0) intersect at right angles on a circle of radius

^ and centre 0^

1 6. If nv n2J
n

s ,
vi be the lengths of the four normals and tv t2i <3

the lengths of the three tangents drawn from any point to the semi-

cubical parabola ay2 = x\ then will

27^*12*13 [Math Tripos, 1890.]

17. The polar equation of the pedal of the curve

(as
2 + y2 - a2

)
3 + 27a2x2y* - 0

with i espect to the point h, k may be written in the form

r = a sin 9 cos 0 - (1h cos 0 + k sin 6) [Oxford, 1888 ]

18 Determine the relation between p agd r for the curve

y
2(Za -x) = (x- a)\ [Oxford* 1889. ]

19 Show that the polar reciprocal of the curve rm = amcos mO with

regard to a circle whose centre is at the pole is of the form

«L_ 7,i j»l
?
»»+icos - 6 = b

m+i
m+ 1

20

Show that the polar reciprocal of the curve xmy
n

-= am+n with

regard to a circle whose centre is at the ongin is another curve of

the same kind.
pWI+1

21.

Show that the first positive pedal of the curve p = ~

~

is

p
m+l$n* _

and that its polar reciprocal with regard to a circle of radius a whose

centre is at the origin is p
m+1 - amr.

22.

Show that the inverse of the curve p =/(r) with regard to a

circle whose radius is k and centre at the pole is

P'

and that the polar reciprocal is

V

9 Jk
in v?>

-o

23.

Show that the pedal of the inverse ofp =J{r) with regard to a

circle whose radius is k and centre at the origin is

&p* _ f(&p\ ••
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*m+l
24. Show that the pedal of the inverse of p - with regard to

a circle whose radius is k and centre at the origin is

/ a\—. 2=4

25. Show that the polar reciprocal of the curve rn=

a

mcosmO with

regard to the hyperbola r2cos 20— a2 is

m m m
rm+1cos —=-0= am+1.m + 1

26.

The locus of a pointX is defined by the equation

^{Pv Pv P& •" Pn) ~ a>

where pv p2,
. . are the distances ofX from n fixed points Pv -A.

Show that the equation of its inverse with regard to any origin 0 is

r„Pnpfrjpi Tjpi r«Pn\ a\R' R’ - Rl *’

where
%pi, pi, ... are the distances ofXf

,
the inverse ofX from the n

fixed points Qly Q2, ... which are the respective inverses ofPl9
Pn .. ;

rl9
r
2) rs, ... are the lengths of OPl9

OP2, ... ; and R - OX'.

27.

Show that the inverse with regard to any pole 0 of the Car-

tesian oval whose equation is Ir + mr' - n, where r, r' are the distances

of any point on the curve from two fixed points Fv Fv is

l . OF1 . Pi + m. OF2 . p2 = npZt

where pl9 p2 are the distances of any point on the inverse curve from

the points which are the inverses of Fv F2,
and p3 is the distance of

the same point from the pole of inversion.

28.

Show that the inverse of a Cassini’s oval defined by the

equation rr' = constant

is of the form p,p2 = Api,

the letters pl, p%, p3 denoting the distances of any point on the

inverse curve from certain fixed points.

29. If all the normals be drawn from 'a given point P to any num-

ber of given curves, and ifP move so that the sum of the squares of

the normals PQ} + PQl + ... + PQ* -= constant,

the normal to the locus ofP will always pass thiough the centre of

mean position of the points (?» Qs* ••• Qn- [Frenet.]

30. A straight line AOP of given length always passes through a

fixed point 0,
while A describes a given straight line AT ; show that

if PT be the tangent at P to the locus of P, the projection of PT
on AOP« AO.
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The point P moves so that OP . O'P - constant, 0, 0' being

fixed points. IfOY% O' Y* be the perpendiculars from 0 and 0*on

the tangent at P to the locus of P
t
prove that

Pr:PY'::OP*iO’P*.

32. Prove that the normal to the curve/(rj rt) - 0, where ru r, aie

the distances of any point on the curve from two fixed points, divides

the line joining the fixed points in the ratio

0/ 0/
ri
0r"

: ra
0r [Math. Tripos, 1888.]

33. A and B are fixed points and P a variable one lying on a

curve given by the relation f(9lt 02)
= 0 between the angles PAB( = 0,)

and PBA( = 09). Prove that the tangent at P to the curve divides •

An in the ratio sin^csin*^-
[Oxford.]

34. 0 and 0' are two fixed points, P any point in a curve defined

by the equation
1 1

r r’ c

where r= 0P, r — O'P, and c is constant. Prove that the distance

between P and tlie consecutive curve obtained by changing c to

c + Sc is ultimately

Sc

where a =00'.
V1 3r* aJc4

nf rV3

[Smith’s Prize.]

35.

In a system of curves defined by an equation containing a

variable parameter investigate at any point the normal distance

between two consecutive curves, and determine the form of the

equation for a system of parallel curves.

[Professor Cayley, Messenger of Mathematic «*, \oI V.]
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ASYMPTOTES.

236. Def. If a straight line cut a curve in two points

y at an infinite distance from the origin and yet is not itself

wholly at infinity,
it is called an asymptote to the curve.

r

237. Equations of the. Asymptotes.

Let'the equation of any curve of the ntb degree be arranged

in homogeneous sets of terms and expressed as

^"(1) +J ”'V.->0+

^

+ ' (A)

To find where this curve is cut by any straight line whose

equation is y=n%+fi (b)

substitute /i+— for ^ in equation (a), and the resulting equation

+ ty« - - 2(V+^ ^ 0 • (c)

gives the abscissae of the points of intersection.

Applying Taylor’s Theorem to expand each of these func-

tional forms, equation (c) may be written

x'faW+x'- 1

+ 0n-l(i«)

=0 ...(D)

+ /30n- l(jt)

+ <pn-d.ft)

This is ane equation of the nth degree, proving that a straight

like will in general intersect a cv/rve of the nth degree in n
points real or imaginary.

The straight line y*=fix+fi is at our choice, and ther

the two constants yu and B may be chosen, so as to satisfy any
. «

1

182
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pair of consistent equations. Suppose we choose p and /8, so

that .....(b)

and ^'oCaO+^-iO*)® 0' (?)

TJhe two highest powers of x now disappear from equation

(d), and that equation has therefore two infinite roots.

If, then, fxv ft# ..., nn be the n values of n deduced from

equation (e) (which is ofAe nthdegree in n), the correspond-

ing values of /3 will in gimlal bo given by

O w <f>n - lC^i) o 1(^2)

and the n straight lines

V=thF+Pi'
y= fi2x+ft2

are the asymptotes

• of the curve.

y=b&+ftj
238. Buie.

Hence, in order to find tfie asjmpt^tes^Qf-^l^^Yen curve,

we may either substitute jj,x+ ft for y in the equation of the

curve, and then by equating the coefficients of the two highest

powers of x to zero find y and ft. Or we may assume the

lesult of the preceding article, which may be enunciated in

the following practical way :—In the highest degree terms put

x= l and y= fx [the result of this is to form cmd equate

to zero. Hence find y. Form in & similar way from
the terms of degree n— 1, and differentiate

<f>n(y), then the

values of ft are found by substituting the several values ofy

in the formula ft— — •

Ex. Find the asymptotes of the eubir

2tf-x2y-2njJ+f+2j*+ay-y*+x+y+U *0.

Here </>3(/x)=pp—*JL
9-y+2-0;

therefore (y - lX/*+ l)(/x-2)=0

;

giving fi— 1, -1* or 2.

Again, <W/*)«2 +-/x-/a2,
!

id aC/*)* fy*
2- 4/a+ 1

;

therefore 0«
3/x2— 4/x— 1
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Hence if ' /*= 1, 0-1,

if *--l. 0=0,

and if /*= 2, /3=0.

Hence the asymptotes of the curve are

y=#+l,

y=-*j
y=2#.»

Examples.

1. The asymptotes of

y
3 - 6-ry2 + 1 l-rfy - G.?3+#+y=0

are y=.v, y=2#, y=3#.

2. The asymptotes of y
3 - + 2y

2+ 4y

+

j?=

0

are y=0, y-^r+l=0, y+#+l-0.

^ 239. Number of Asymptotes to a Curve of the nih- Degree.

' It is clear that since <fn(p)= 0 is in general of the ri^ degree

in p, and P<j> v(p)+<j> tl -i(p)= 0 is of the first degree in /3, that

n values of p,
and no more, can be found from the first ^equa-

tion, while the n corresponding values of /3 can^j^J^n^d from

the second. Hence n asymptotes, reaZ or imaginary
,
jaw

found for a curve of the nth degree .

240. If the degree of an equation be odd it is proved in

Theory of Equations that there must be one real root ai least.

Hence any curve of an odd degree must have at least one reaL

i asymptote, and therefore must extend to infinity. A7o curve

therefore of an odd degree can he closed. Neither can a curve

oT odd degree have an even number of real asymptotes, or a

curve of even degree an odd number.

241. If, however, the term y
n be missing from the terms of

the 71th degree in the equation of the. curve, the term pn will

also be missing from the equation 0n(^)= O, and there will

therefore be an apparent loss of degree in this equation. It is

clear, however, that in this case, since the coefficient of pn is

zero, one root of the equation <pn(p)= 0 is infinite, and there-

fore ^the corresponding asymptote is at right angles to the axis

of x
;

i.e.9 parallel to that of y. This leads us to the special

consideration of such asymptotes as may be parallel to either

of the axes of co-ordinated
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242. Asymptotes Parallel to the Axes.

Let the curve arranged as in equation (A), Art. 237, be

a^n+a
1
aj
n-^+a^n“V+...+an-i«ynf

1+a«y
n

• +b
x
xn ~ l +b&n-*y + +6nyn

“ 1

+c<pn-* +...

If arranged in descending powers of x this is

<tyc
tt+

(

fhV+

\

“ 1+«.-=0 (b')

Hence, if a0 vanish, and y be so chosen that

^+6i= 0,

the coefficients of the two highest powers of x in equation (B')

vanish, and therefore two of its roots, are infinite. Hence the

straight line a
x
y+b

x= 0 is an asymptote.

In the same way, If an= 0, an-ix+bn= 0 is an asymptote.

Again, if a0= 0, ax= 0t &,=(), and if y be so chosen that

«22/
2+622/+ c2= 0>

three roots of equation (b') become infinite, and the lines repre-

sented by a
2y

2+b2y+c2
=0

represent a pair of asymptotes, real or imaginary, parallel to

the axis of x.

Heme© the rule to find those asymptotes which are parallel

to the axes is, “ equate to zero the coefficients of the highest

'powers of x and y”

Ex. Find the asymptotes of the curve

xtyt-aPy-xyZ+x+y+l^O.

Here the coefficient of x2 is y
2 and the coefficient of y

2
is x*—x. Hence

*r=0, 1, 0, and y= 1 are asymptotes. Also, since the curve is one

of the fourth degree, we havp thus obtained all the asymptotes.

Examim ES.

1. The asymptotes of y\x*—cF)=*x are

y-0 y
x-' ±af

2. The co-ordinate axes are the asymptotes of

xf+x*y=*a}. ,
t

3. The asymptotes of the curve^a«*c2(.v2+y2
) are the sides of a square.
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24& Partial Fractions Method.

The values of /3, viz.,

0n-l(Ml) ...

_
*»W’

are exactly the constants required in putting

<f>n -l(t)

into partial fractions.*

This gives a very easy way of obtaining the asymptotes.

For if

#
__A , §2 i & I

*»(£) ^2 ‘

the asymptotes will be

2/= /x
1^-f-/31 ,

y=M2^+i®2»
etc.

Ex. Find the asymptotes of the curve

( r
l -y2)(jj+2y) 4- 5( f2 +y2)+x+y =0.

25 5

Ueiv g±? __ _= 3 3 ft
.

<f>n(t) (2*-H)(*-l)(/+l) 2t+l t-l t+l
25

Hence the asymptotes aie 2y+r~
»>

5

y>+x—JS.

244. Particular Cases of the General Theorem.

We return to a closer -consideration of the equations

0»(m)=O, (E)

+ <pn- lift) — 0 (E)

of Art 237.

It is proved in Theory of Equations that if an equation such

as <£nOu)=0 have a pair of roots equal, say pv then
<f>'*,(&)— 0.

* Suppose the single factor t-^to occur in
<f>n {t). Let

0n(O= (*~/*l)x(O-

Hence, differentiating 0'„ (i5) =x($) + (t - Mi)x'(0»

apd putting 0 »(/h) ^xC/h)-

Bufc^if -~-.be the partial fraction corresponding to the factor t-p^,

(Art. 109)xW
tL _0n-l(Mi)
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I. Let the roots of 0»Ot)=O be /q, /i*..., /*», supposed a

U

different, so that ^Cm) does n°t vanish for any of these roots.

Also, suppose 0n(/*) and <pn-i(ji) to contain a common factor

,
4 —juli Bay, then 0»-i(/x1)=O, and therefore j81 =0.

Hence the corresponding asymptote is y^fxx
x and posses

through the origin

.

II.' Next, suppose tew 0/ the roots of the equation 0n(/i)=O
to fee equaly e.g

,

then = 0. In this case, if

<pn -i (ft) do not contain yu— as one of its factors, the value jS

determined from equation (f) is infinite. The line y=juLlx+fil
then does indeed cut the curve in two points at an infinite

distance from the oiigin, but it makes an infinite intercept on

the axis of y and therefore this line lies wholly at infinity.

Such a stiaight line is not in gjcneial called an asymptote, but

it will however count as one of the n theoretical asymptotes

discussed in Art 2.39. •

III. But if 0n(^) = O have a pair of equal roots each =fiv
we have 0'w(/x^= 0, and if /q he also a root of 0n _i(/i)= O the

value of /3 cannot be determined from equation (f). We may
however choose f!i so that the coefficient of aj

A “ 2 in equation (d)

of Art 237 vanishes, that is so that

^ <t>"n (p) + /?0'n- l(/i)+ 0n- 2(/x) = 0,

from which two values of /3, real or imaginary, may be deduced

Let the roots of this equation be and We thus obtain

the equations of two parallel straight lines

y= HiX+Pi,
which each cut the curve in thiee points at an infinite distance

from the oiigin. In this case there is a double point on the

curve at infinity (see Art. 286).

It is clear that in this case any straight line parallel to

y—HiX will cut the curve in two noints at infinity. But of all

this system of parallel straight lines the two whose equations

we have just found are the only ones which cut the curve in

three points at infinity, and therefore the napie asymptote

is confined to them. The one equation which includes Jbotb

straight lines is obtained at once by substituting y— /qcc for )8

in the equation to obtain fi and is ,
t

(y— Mi®) +2(y— + 2^n. 2(mi)

=
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Ex>Find the asymptotes of the cubic curve

afi+2a?y+xy*-aP-xy+2=0'
Equating to zero the coefficient of y

2 we obtain *=0, the only asymptote

parallel to either axis.

Putting px+fi for y,

a?+ 2*2Qx*

+

(3)+x(fix+ /3f— **

—

x(fjuc 4* j8)+2 =<0,

or rearranging,

*3(1 + 2/X+/X-)+^(2/J+ fyt/J- 1 -tf+xiF - (3)+2=0.

1 + 2/a+/i2—0 gives two roots /x= - 1. 2/J+2/a/J-1-/a=0 is an

identity if /x= — 1, and this fails to find /?.

Proceeding to the next coefficient, /3
2 -/?=0 gives f3

= 0 or 1.

Hence the three asymptotes are *=0, and the pair of parallel lines

y+*=0,
y+*=l.

245. Form of the Cune at Infinity. Another Method for

Oblique Asymptotes. ‘ *

Let JPr, Fr be used to denote rational algebraical expressions

which ’contain terms of the rth and lower, but of no higher

degrees.

Suppose the equation of a curve of the nth degree to be

thrown into the form

(ajr+by+c)Pn-i+Fn^ = 0 (1)

Then any straight line parallel to ax+by = 0 obviously cuts

the curve in one point at infinity
;
and to find the particular

member of this family of parallel straight lines which cuts the

curve in a second point at infinity, let us examine what is the

ultimate linear form to which the curve gradually approximates

as we travel to infinity in the above direction, thus obtaining

the ultimate direction of the curve and forming the equation

of the tangent at infinity. To do this we make the x and y of

the curve become large in the ratio given by x:y——b:a,
and we obtain the equation

(U>+by+c+Ltya ^J^^*=Q.
If this limit be finite we have arrived at the equation of a

straight line which at infinity represents the limiting form of

the curve, and which satisfies the definition of an asymptote.

To obtain the value of the limit it is advantageous to putha*
x— —j and y— j>

and then after simplification make i=0.
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Ex. Find the asymptote of

We may write this curve as

(#+ 2y)(x*+xy+y*)=x*+y*+ a?,

whence the equation of the asymptote is given by

and putting #=-11?, we have ,
{ r

4 1 2

4*j.94/— Tj 5— 2<^+2y— —
g
— j

tr-btt-.Q—- =

t*~?+ t*

*+2y=|

5
3’

Example. Show that is the only real asymptote of the curve

(ff+yX^+y*5= +

«

4
)-

246. Next, suppose the equation of ^ curve put into the form *

(ax+ by+ c)Fn _ i

+

Fn - 2= 0,

then the line ax+by+c^O cuts the curve in two points at

infinity, for no terms of the 71th or ('ft— l)th degrees remain in

the equation determining the points of intersection. Hence in

general the line ax+by+c= 0 is an asymptote. We say, in

general
,
because if Fn-\ be of the form (ax+by+c)Pn^ itself

containing a factor ax+by+c
,
there will, as in Art. 244, ill.,

be a pair of asymptotes parallel to ax+by+c=Of each cutting

the curve in three points at infinity. The equation of the

curve then becomes

(ax+ by+ c)
2Pn-2 -fFn _ 2= 0,

and the equations of the parallel asymptotes are

ax+by+c= ±J-Lt~^t

* »-2

where x and y in the limit or the right-hand side become

infinite in the ratio -= —
y a

Or, if the curve he written in th$ form

(ax+by)2Pn.i+ (ax+by)Fn.2+/n_a= 0,

in proceeding to infinity in the direction ax+by—O, we have

(ax+ by)2+(aas+by) . LtZl,

--\-Lt'pz^-=0
* n-2 *n-2
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when the limits are to be obtained by putting x= — V—j*

and then diminishing t indefinitely. We thus obtain a pair of

parallel asymptotes

ax-\-by= a and ux+by= ft

where a and /3 are the roots of

L n-± n- 2

And other particular forms which the equation of the curve

may assume can be treated similarly.

Ex. 1 Tofind the j)air ofparallel asymptote& of the curve

(2jc - 3//+1r(z +,?/) - ar+2//-9-0

Hert 2i — 3;/ + 1 — ± \JLt**
~ 2'/±°,
*+y

where v and y become infinite m the direction of the line 2x— 3y
3 9

Puttihg x— ,
tlic right side becomes ±2. Hence the asymptotes

t t

required are 2x — 3y— l and 2v—3y+ 3=0.

Ex. 2. Find the asymptotes of

(x—y)2(x2+y2
)
— 10(v—y)v2+ l2y

2+ 2x+y= 0.

Here {r—y)
2— 10(r —y)Lt» y -r - +

1

2Ltx—y—<n — 0.
* -fy x-+yJ

or (v -y)*-b(c—y)+ 6—0,

giving the parallel asymptotes x —y~2 and r-y—3

247. Asymptotes by Inspection.

It is now clear that if the equation Fn= 0 break up into

linear factors so as to represent a system of n straight lines no

two of which are parallel, they will be the asymptotes of any

curve of the form Fn+Fn - 2= 0.

Ex. 1. (r —y){x+y)(x+ 2y - 1 )
~3v+ Ay+

5

is a cubic curve whose asymptotes are obviously *

**-y= 0,

x+y*= 0,

x+2y - 1 =0

Ex. 2. • (x-yY(x+ 2y-l)=^32? + 4y+5.

itere x+2y — 1=0 is one asymptote. The other two asymptotes are

parallel to y—x. Their equations are
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248. Case in which all the Asymptotes pass through the Origin,

If then, when the equation of a curve is arranged in homo-

geneous set of terms, as

• t&n+ 'W'»-2+ 'W'n-8+ ... = 0,

it be found that there are no terms of degree -n— 1, and if also

wn contain no repeated factor, the n straight lines passing

through the origin, and whose equation is 0, are the n
asymptotes.

Examples.

Find tlie asymptotes of the following curves :

—

1. y*=x\2a—x).

2. y
3—x(a2 --x2).

3. ^+^=o3
.

4. §£a2+x2)=arx.

5. aory—x^ — a3. •

6. y
2(2a-x)=x\

7. x3+yz =3ajLy.

8. x2y +y2x—a\
o. xYHa+yfiW-r)-

10. zy=a.y-bw.
11. jiy{x-y)-a{xi-yv)=bz

.

12. (a2 -^)yJ=i2
(£/

2+^2
).

13. xy2= 4cr‘(2a - or).

14. y
2(a - x)=x(b — x)2.

15. x2y=x'+x+y.
16. xyt+aty^aP+mxP+nx+p.
17. x?+ 2x2

y — xy2 - 2y
3+ Ay2+ 2xy+y - 1—0

18. x*-2x*y+vy2+x2-xy+2=Q.
19. y{x-yY=y(x -y)

4- 2.

20. a?
3 + 2x2

y — 4dr#/- — 8

y

3 —4#+ 8?/ == 1

.

21. (tf+y)%r+2y+2)=# + 3</-~2.

22. ar3+ 17*rfy+21#y
2— 9y

3 - 2cur - 12axy - 1Say2 - 3ar.r+a3y*0.

# 249. Intersections of a Curve with its Asymptotes

If a curve of the nth degree L; ' e n asymptotes, no two of

which are parallel, we have seen m Art. 247 that the equations

of the asymptotes and of the curve may be respectively written

Fn=0/
and ^n+jPn- 2= 0.

#

The n asymptotes therefore intersect the curve again at points

lying upon the curve -Fn-a-O. Now bach asymptote cuts its

curve in two points a\ infinity, and therefore in w—2 other
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points. Hence these n(»-2) points lie on a certain curve

of degree n—2. For example,

1. The asymptotes of a cubic will cut the curve again in

three paints lying in a straight Une ;

2. The asymptotes of a quartic curve will cut the curve

again in eight points lying on a conic section ;

and so on with curves of higher degree.**

«

Examples.

1. Find the equation of a cubi<which has the same asymptotes as the

curve ^-6#fy+lljy9 *-6y3 +a?+y-f 1=0, and which touches the axis of y
at the origin, and goes through the point (3, 2)

2. Show that the asymptotes of the cubic aPy-xy^+xy+y'+x-y—

0

cut the curve again in three points which lie on the line x+y= 0.

3. Find the equation of the conic on which* lie the eight points of

intersection of the quartic curve xy(x2-y2)+a2
y
2+b*x2=a*b2 with its

asymptotes.

4. Show that the four asymptotes of the curve

(x2—y
2
Xy

2 ~ ^r2
)
— Sx9+ bx*y+ 3xy*— 2y* -x2 4- 3xy-1=0

cut the curve again in eight points which lie on a circle.

5. Form the equation of the cubic curve which has x=*0, y=0, -

1

for asymptotes, and cuts its asymptotes in the three points where they

intersect the line ^+^= 1, and also passes through the point a, b.

6. Form the equation of a quartic curve which has a =0, y—0, y—x,
y= —x for asymptotes, which passes through the point a, 5, and cuts its

asymptotes again in eight points lying upon the circle x*+y2=a2
.

250. Common Transversal of a Curve and its Asymptotes.

The equation of the asymptotes and that of the curve

coincide in the terms of the 71th and (n— l)111 degrees. Hence,

if we put both equations into po^ars, ‘the sums of the roots of

the two equations for r are equal
;
also, the origin is arbitrary.

Hence, if through any point 0 a line 0PxPJPz^. be drawn to

cut the curve in the points Pv P2,
P8, ... and tlje asymptotes

in pv j

p

2, p9> . ; . then 2OP » 2Op, whence, if 2OP— 0, it follows

that 20p«0, so that both systems of points have the same

centre of mean position. Hence also the algebraical sum of the

intercepts between thecCurve and the asymptote is zero,

[Newton.]
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A well known case of this is that of the hyperbola, where, if

0 be the middle point of P
x
l\, OP

1+OP4
- 0, and therefore

Op
L+ Opt

-0, and therefore 0 is also the middle point of pxpit

whepce it follows that in that case P
xpx =p0P.,.

251. Other Definitions of “ Asymptotes.”

Other definitions have been gjiven of an asymptote,

(a) That an asymptote iafckhe I uniting position of the tangent to a
curve when the point of contact moves away along the curvo

to an infinite distance fiom the origin, while the tangent itself

does not ultimately lie wholly at infinity; again, (/?) That an
asymptote is a straight line wh^e distance from a point on
the curve diminishes indefinitely as the pointSnoves away
along the curve to an infinite distance from the origin.

252. To prove the Consistency* of the Several Definitions.

We propose to show that the results derived from these definitions are
the same as those deiived fmm o;n definition in Ait. 23G.

( Ymsider definition (a).

Let the eur\ e be V-

u

M+ vH-i-\ + 140
= 0.

The equation of 1 he tangent is

ir ^ r-'

-V
c +y\ + j+... +/«?<<,- 0.

u r Oy

We shall now suppose the point of contact ./*, >/ to move to oo along some
branch of the curve. We shall therefoie only i eta in the highest powers
of x and*?/ which oecui, vi/ ,

those < jf the (v — l)
th degiee. Thus we must

retain only ^ for ^> fo1
>
antl «»-i for tt„_,+2un...+ ...+* u<t.

Hence in the limit we shall have

0u„
I -[ ou„

;

" J * -

and it is easy to see that this agrees w i a* the equation of an asymptote
found in Art. 237.

253. We , i consider definition (fi) ; we have already shown that

ax+ by+c= 0 is, according to our definitipn, in general an asymptote of
the curve (ax+by + c)Fn-1.+ /'

T

„-3*=0.

The perpendicular from any point x, y of this curve upon the line

ax+by+c=* 0

ig
ax+by+c^ 1_ _

%Fn. g

•JlF+b* Va-+&2 Fn-i
N •B.D.C.



194 CHAPTER VIII.

and the limit of this expression is clearly zero when x and y become in-

finite in the ratio - b : a, provided that the terms of degree n - 1 in Fnmml

do not contain ax+by as a factor, for the degree of the denominator is

higher than that of the numerator. Hence the distance between the curve

and the asymptote is ultimately a vanishing quantity, and the line

ax+by+c=

0

is such as to satisfy definition (ft).

254. The Curve in General lies on Opposite Sides of the

Asymptote at Opposite Extremities.

Let the straight line ax+by+c=0 be an asymptote of the

curve, and suppose there is no other asymptote of the curve

parallel to this. The equation of the curve is of the form

(ax+by+<')Fn-i+Fn -2= Q'> and, as in the last article, the

perpendicular from any point xt y of the curve on this asymp-

tote is given by

When x and y become very large in the ratio given by

y _ __a

x~ F
this may ultimately be written as

where k is a constant, and it is therefore obvious that P
changes sign with x.

Hence in general the curve at the opposite extremities of

this asymptote lies on opposite sides of it.

255. Exceptions.

If, however, ax+by be a factor of the terms of highest

degree in -Fn - 2,
we may write the equation of the curve

(ax+ by+ c)Fn _ i

+

Fn > 3= 0,

so that the perpendicular on the asymptote is now given by

p __
ax+by+c_ 1 Fn 3

“ JFs+F ~ Juf+b*
and when x and y become very large in the ratio given by

t S/__ a
aT V

this can be ultimately written

This, however, though ultimately vanishing, does not change
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sign with x, so that in this case the cui®re at opposite extremities

of the asymptote lies on the same side of it.

256. Again, if the equation of the curve be expressible in

the-form (ax+by+c)2Pn . 2+Fn ^ 2=Oy

the expression for the length of the perpendicular is in the

limit of the form /(^)- This do<js not in general ultimately

vanish, and therefore in general ax+ by+c= 0 is not an asymp-

tote, but is parallel to a pair of asymptotes. This case has

been discussed in Art. 246.

257. If, however, the curve assumes the form

(ax+ by+ c)2Fn ~ 2+ Fn - a= 0,

the length of the perpendicular is given by

(Perpendicular)^.-^

y ft

Hence, if the ratio of J be that of — j when x and y become
x o

infinite, this may ultimately be written

and therefore Perpendicular= ±

which ultimately vanishes, but x cannot change sign or the

perpendicular will "become imaginary at one extremity of the

asymptote. Hence the line is only asymptotic at one end and

the curve approaches the asymptote on opposite sides.

And in the same way other particular forms may be discussed.

258.

Curvilinear Asymptotes.

If there be two curves which continually approach each

other so that for a common abscissa the limit of the difference

of the ordinates is zero, or for a common ordinate the limit

of the difference of the abscissae is zero when that common
abscissa or common ordinate is finite, these curves are said

to be asymptotic to each other. For example, the curves

y=Ax2+Bx+C+

-

9

x
y=Ax2+Bx+C 9

are asymptotic
;

for the difference of their ordinates for any

common abscissa x is a quantity whose limit is zero when

x is infinite. • _
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259. Linear Asymptote obtained by Expansion. Stirling’s
.

Method.*

If it bo possible to express the equation of a given curve in

the form ?/=Ax+B+ -+
,2+ •••,

1

JO %t'~

then the line y= A.r+B is clearly asymptotic to the curve.

This method of obtaining rectilinear asymptotes is frequently

useful.

260. To find on which side of the Asymptote the Curve lies.

The sign of C (Art. 250) is useful in determining on which

side of the asymptote the curve lies.

Let y be the ordinate of the curve, }/ that of the asymptote,

Cl)
then V-'V'=, —

ti,

* ft

If x be taken sufficiently large, the sign of governs the sign
• x

of the* whole of the right-hand side.

Suppose x and y to be positive, i.e., in tha first quadrant,

then y— y will have in the limit the same sign as C. If C be

positive, y — y will be positive, and the ordinate of the curve

will be greater than that of the asymptote, and the curve will

therefore approach the asymptote from above. Similarly, if i!

be negative,y— y' will be negative, and the curve will approach

the asymptote from below. And in the same way for portions

in the other quadrants.

Ex. 1 . Find the asymptotes of the curve

y
2(x ~ - «-)—x%r2 — 4'»2).

Here — gives x—a and x=— a, two asymptotes parallel to the

axis of y.

Again, y—±x

* Lin. TfH. Ord. Newtoniance, p. 48.
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H£nce the asymptotes are y—
and

oan

Again, considering y=x - + . .

.

JiX

it appears that if x be positive the ordinate of the curve is less than the

ordinate of the asymptote, and therefore the curve approaches the line

y =*x in the positive quadrant from below. Similarly the curve approaches

the asymptote y~ -x in the fourth quadrant from above.

The student should observe that the curve cuts the axes where #= ±2a,

and also at the origin where the tangents are y=±2x. Also that y is

imaginary when jc
2 lies between a2 and* 4a2

. There should now be no

difficulty in drawing a graph of the curve.

Ex. 2. Find the asymptotes of

(y - x)2x - 3y(y - x)+ 2x=0,

and examine how the curve is placed with reference to them.

IT'*re the coefficient of y
2 is .r-3

;
therefore x=3 is an asymptote.

Also the curve may be written

(’/ - x)
2 - 3(y - 2

=

0,

s .

v

and therefore, in the direction y—x at infinity, this ultimately takes the

form (y-x)2- 3(y-.r)+ 2-0.

lienee y - x= 1 and y~x=

2

are asymptotes.

Put y-x=A+^+...
,* x

therefore the equation of the curve becomes

(a + ^+ x—3(x +A -b . . .\f& + ^ 2#=0*

x(A2- 3A+ 2)

+

{2A$- 3(A2+ B)}+ . . . - 0.or
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Equating to zero the several coefficients

A2 -3A+ 2=0,

2A/?-3(A-+£)=0,
etc.,

whence .4=1 or 2,

/?= -3 or 12,

etc.

Hence the equation of the curve piay be expressed in either of the ways

y=*+l- 3
...

,
^=r+2+I2 ....

X X
Hence to the right of the y-axis the curve lies below the asymptote

y=x+ 1,

and above the asymptote y—

x

+ 2.

On the left side of the ?/-axis the curve is above

y=x+l,
and below • y=x+ 2.

The student will easily verify 4

(a) that neither of the cross asymptotes cuts the curve again in a point

whose co-ordinates are finite ;

(ft) that the asymptote .r=3 cuts the curve where y= 3§ ;

(y) that the product of the roots for y is and is positive unless

x lies between 0 and 3, but is then negative
;

(5) that y is imaginary if x lies between 0 and - 24 ;

(c) that the tangent at the origin is .r=0.

Figure 31 is a tracing of the curve.

Examples.

1. Find the asymptotes of the curve y—x^t
a '^ Find on which side

X“ d/“

of the oblique asymptote the curve lies in the positive quadrant. Show
also that the hyperbola x(y -#)= 2a2 is asymptotic to this cubic curve.

2. Find the asymptotes of the curve y2 -s#*
37-

*-®, and find on which side

the curve approaches these asymptotes.
x a

3. Show that the curve x-^-
~ a

has a rectilinear asymptote y— 0,
ay

and a parabolic asymptote y
2= ax.

4. Show that the curve xhy=x*+x?+x2+x+l has a parabolic asymptote

whose vertex is at the point (-£, |), and whose latus rectum= 1.

5. Show that the curve xhj=jfi+x*+x+\ has a hyperbolic asymptote

2 *

whose eccentricity=— ^ —
V2+V2

'

261. General Investigation.

In order to express the general equation

(i)
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in the form »x+p+y
x+ î

+. (2)

substitute for y from (2) in (1) ;
then, since the result must be

an identity, the coefficient of each power of x will be zero.

This will give sufficient equations to determine p, ft, y, ....

The result of this substitution is

+
|

/30n(M)+a^“
2 7<t> n(/*)+ • • • = ()

+ 0W- l(/W)

+ /30'n -l(/*)

+ <f>nA(v)

which gives us the series of equations

• 0«(m) = 0, (i.)

P</>'n(v)+ </>n-l(jUL) = 0, (ii-)

70 «(M)+^,
0"n(/<*)+/?0n - l(M)+ <Pn - 2(/x)= 0, (iii.)

Hence /x, /3, y are determined.

262. Parabolic Branches.

In the case when 0n(/ji)= O has equal roots fiv it follows as

in Art. 244 that 0/0*i)
= 0. If then 0n _i(y

u1) does not also

vanish jt appears that the second of the above equations (ii.)

cannot be satisfied by any finite value of )8. Hence the assump-

tion that the equation of the curve can be thrown into the

form (2) with jxx
for the coefficient of x is no longer tenable.

The equation of the curve is now of the form

(y““/*iaj)
2yn-2+ ^n-l+ ^n-2+*-+ /

M'0
== ® (3)

where un ^i does not contain the factor y—^x. #

We may write this

0,

and if we put a for Lt and B for Lt-n
~ 2 when x and

XVn-2 Vn-2

y become infinite in the ratio 1
: ft1

the curve ultimately approxi-

mates to the parabolic form •

(y-HiX)
2+ax+/3=:0 (4)

This parabola, although a first approximation to the shape

of the curve, is not in general asymptotic to it, but serves to
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suggest that in closely examining the parabolic branches we
should endeavour to expand y in the form

y ABC
x x* x a* 2

.(5)

and discard for this case the expansion (2) assumed in the last

article.
#

If wo substitute this in

,0+-^©+-^©+ • • • = ° c1)

and expand as before, the result (after collecting the coefficients

of the powers of x) is

*#
W
0/i(/a)

#

[Afa'fo)]

+xn~ l
[B</)n

/

(fx)+i[
> 0/00+ 0* iCm)]

fXn
"

"
[C<f> u(/l)+AB<p"n(fil )+^ +A <f)'n _ , (hi) ]

+ 3J
n ~ 2

[/>0rt'(/z)+ m) <{>n"(f*')+A(
1

<l)n'Xn)+ %) rt>"n(fj.)

+ - i(/*)+ ^
0** i(m)+ 0h-s(m)]

+ etc. = 0,

and equating to zero the several coefficients

0/»(m) = 0 (and by supposition fnW = 0,

J2
0 ;it/A)+ 0>i-l(/A)= O,

+ QV«0»)+^»- xO*) =0.

7?2 12 7? >1 i

ity.w+ "^+ a +5^""Xu>

+ -#</>'* - l(/i)+ ^0"/i - 1(^)+ 0n-

2

(m)=

etc.,

which determine the hitherto unknown constants

* A, B, C'....

The parabola (y—^— 7?)
2= -d 2

*c

is then asymptotic to the curve, and the side of the parabola

on which the curvo lies is indicated by the sign of (7.
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It should he noticed that the first approximation

(y —julx)2—A 2x
is not in general asymptotic to the curve.

2fi3. In practice it is found more convenient to adopt a

method of successive approximation to obtain the ultimate

form of a parabolic branch at an infinite distance from the

origin. This method will be indiiated best by an example.

Ex. Obtain the rectilinear asymptote of the curve (y~x)2(i/+ x)=2<w8
,

and examine the parabolic branch.^ «

The rectilinear asymptote is parallel to y+.r— 0. We may write the

equation

y+.r= 2a
**

(v-t'Y
Jr'2— 2a—0

to a first ifpproximation

-i ; <»>

giving the equation of the asymptote.
,

Proceeding to a second approximation,

y+x=2a *

,2>

This indicates that the curve lies above the asymptote on the right-hand

side of the y-axis, but below on the left.

To examine the parabolic branch.

The axis of the asymptotic parabola is clearly in the direction y— x.

For a first approximation to the shape at infinity,

<»

For a second approximation, substitute this value of y and we obtain

. / '‘lax
1

y-x J .

V
lax

or y-x=\Arw-“.. ,.(4l
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To obtain a third approximation, use the value of y given by Equation

(4)

Thus

or

* m.

2aa*

x+x+Jax-
0

^

6 a*y-x=Jax-%a+ -
(
6)

It appears, therefore, that though the first approximation (3) indicates

the ultimate shape of the curve at infinity, it is not asymptotic to the

curve. r

The second approximation (4) is Si true asymptotic parabola, for Equa-

tion (5) shows that the limit of the difference of its ordinate and that of

the curve is zero.
c

The third approximation (5) shows that the ordinate of the upper

branch of the parabola is less than that of the curve, and that the ordinate

of the lower branch of the parabola is greater than that of the curve, so

that both branches of the curve approach the parabola from the outside.

We add a tracing of the curve.

Fig. 32.

264. For further information on the subject of curvilinear

asymptotes the studeqt is referred to Frost's Curve Tracing,

chapters VII. and VIII.
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265. Polar Co-ordinates.

Let the equation of the curve be

r»/„(0) +r»-y„_ 1(0)+ . . .+/o (0) = 0 (1)

or
.

.

unf0(6)

+

u» - y/0)+ . . . +fn(0)

=

0 (2)

To find the directions in which r=oo or it=0 we have

fn(0)=0 (3)

Let the roots of this equation be*

6=a, ft, y, ....
A

Let XOP=a. Then the radius, OP, the curve, and the

asymptote meet at infinity towards P. Let OF(=p) be the

perpendicular upon the asymptote Since OF is at right
#

dO
angles to OP it is the polar subtangent, and —^ I'0*'

XOV=a, and let Q be any point whose co-ordinates are r, 0

upon the asymptote Then the equation of the asymptote is

p= r cos (0— a) (4)

It is clear from the figure that a'=a— T-

dO .

To find the value of —^ when u= 0 differentiate equation

(2), and put u= Q and 0=at an 1 we obtain

(dll=o/
”- l(a)+/"(a)=0 (5)

Substituting the value of • hence deduced for p in

equation (4) we have

=rsin (a— 0).
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Hence the equations of the asymptotes are

r *.(.-#)Jyja,

etc.

Cok. The case most often met with is that in which w= 1,

when the equation of the curve is ,rf1(0)+fo(6)= O. Then

J\{&) = 0 gives a, /?, y, etc.,'and the asymptotes are

r sin («— 6)= \(°^
}
etc.

/ iW
26(5. The equivalent Cartesian form

•
,

fdd\

will be found convenient to remember and somewhat easier to

dram the asymptote from than the polar equation.

f 267. Eule for Drawing the Asymptote.

After having found the value of suppose we stand

at the origin and look in the direction of that value of 0 which

makes u= 0. Draw a line at right angles to that direction

through the origin and of length equal to the value of

(W\— '

) to the right hand or the left according as that
da/u=o

b

value is positive or negative. Through the end of this line

draw a perpendicular to it of indefinite length. This straight

line will be the asymptote.

268. To deduce the Polar Asymptote from the Polar Tangent.

The same results may be deduced from the equation of a

tangent (Art. 206).

The result £7 cos (0— a)+ CTsin (0— a) at once reduces

to
1

If
,=rsin (0— a), when U=0. Putting

~~U'-fn(a)’
as found in the last article, we again obtain the equation

4 r .sin (a — 6) =
,/»- i(u)

/»(«)
*
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Ex. Find the asymptotes of the curve

r=a tan 9 or r cos 9 — a sin 0=0.

Here fi{6)= cos 9 and /o(0)= - a sin .

cos 9w=0 gives b"v etc->

and /o(a) a sin a
__ w

/'i(a) - sill a

Hence 4 sin 0\—a or r cos 0 ~<t

r sin — a or t cos 0- - a

are the asymptotes.

Or, using tin* (’artesian formula of Art. 2(50,

v - \*ot 0,

for this an <>le.

Hence

becomes

u—0 if 0— tnr+ ir

i
?yid — (

^=ctnu\ 20—a
2 f/tt

Jlenee the formula ?/ cos a ~ ,r sin a +

205

2(19. An Exceptional Case.

In forming Equation 5, Article 205, it lias been assumed that the value

of there obtained is not indeterminate
;
and, further, that none of

the coellicients of the seveial powers of if become infinite in the limit when 0

is put e<fual to a. Tf on diffeientialing Equation 2 and putting v — 0 and

9-

a

any term should occur which is indetei inmate, it must be retained and

the true 1 value of evaluated, either m an elementary manner or
\du/ H o

by the methods laid down for undetei mined forms in Chap. XIV.

Examples.

1 . rOh—a. 5. r— 2a sin 0 tan 9.

2. rO—tt. 6. r sin 20—

a

cos 30.

3. r sin n0= <u 7. r -rr+ b cot n 9.

4. r— a cosec 9+ b. 8. r"sin n9= an
.

9. Show that all the asymptotes of the curve rt&nnO—

a

touch the

circle r= tl
-

n

270. Circular Asymptotes. *

In many polar equations when 6 is increased indefinitely it

happens that the equation takes the foi^n of an equation in r,

which represents one or more concentric circles.
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For example, in the curve

which may be written r—a-

^

,

it is clear that if 0 becomes very large the curve approaches indefinitely

near the limiting circle r—n.

Such a circle is called an asymptotic circle of the curve.

EXAMPLES.

1. Find the asymptotes of the Curves

(i )
r* ahy - y

r, = 0.

(ii.) //*— x*= a2xy.

2. Show that there is an infinite number of asymptotes of the

cm ve y = (a- aj)tan ^
r

,
viz.,

x = - a, v -- ± 3a, x^~ ± 5a, etc.

3. Prove that any tangent to the curve 3xy2
r 3 is divided by the

asymptotes and the curve into segments which bear a constant ratio

to each other. [OxroRD, 1889 ]

4. Find the asymptotes of the curve

x2(r + y)(x - yY i ax\x -y)- a2
y
3 =- 0. [Oxiord, 1889 J

5. Find the asymptotes of the cui ve

(x - y)
2(x - 2y)( r - 3y) - 2a(x3 - y

3
)
- 2a2(x + y)(x - 2y) = 0.

[Oxford, 1888 ]

6. Determine the asymptotes of the sextic

(x2 - 2y
2
Y{ 2( r-’ + 2y

2
) - 3} = {

S(x* + 2/) - 4}
3

.

[Oxford, 1886.]

(tO2

7. If r- —
,
the curve has two lectilinear asymptotes at a dis-

u" — L

tance ^ from the pole, making angles ±1 with the prime radius.
2

Also, there is a circular asymptote.

8. Find the asymptotes of the curve

r0 cos O^a cob 20. [Oxford, 1889.]

9. Find the asymptotes of the curve

rO cos O^ae9
. s [Oxford, 1888. ]

10. Show that there is an infinite series of parallel asymptotes to

th* cur™ r=m+b
>

and show that their distances from the pole are in Harmonical Pro-

gression. J*d the circular asymptote.
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11. Show that the curve (fi(ar — r2
)
— b2 has a circular asymptote.

12. If u -f(0) be the equation of a curve and f(6) = 0 gives a root

0= a, the corresponding asymptote is

, sec a
- 2/

= atana + __.
/(«)

Ex. For rO = a(02 - ?r2
)
the asymptote is y + air2 = 0.

13. Show that if y = xf{x) be the equation of a curve which admits

of a rectilinear asymptote, then

is its equation.

Apply this method to find the asymptote of cc
3 + y

3 ~ 3axy.

[Baily and Ldnd.1

14. Show that one of the asymptotes o,f the curve

x3(x - 2y)
2 - 8ay3(x -2y + 2a) - 2d*xy= 0

touchos it at a point whose co-ordinates are finite. [Oxford, 1890 ]

1 5. Determine the asymptotes of the curve * *

4(x4 -4-
2/
4
)
“ 1 7a2

?/
2 - 4a(4y

2 - as
2
) + 2(as2— 2) = 0,

and show that they pass through the points of intersection of the

curve with the ellipse x2 + 4y
2 - 4. [Oxford, 1890.]

16. Prove that the mn intersections of two curves of the rri and

nth degrees, and the mn intersections of the asymptotes of each with

those of.tlio other lie on a curve of the (m + n - 2)
th degree.

Examine the case of a number of the asymptotes being the same

for both curves. [Math. Tripos, 1876.]

1*7. Determine completely the relation of the line ax + by = 0 to

the curve (ax + by)2vn . 2 + (ax + by)wn_2 + w„-3 + . . . + u0 = 0

where vr} vr, wr are homogeneous functions of x and y of degree r.

a!2 b2
Trace the curve 1, and determine the form it assumes

xl

when a is diminished indefinitely [Math. Tripos, 1884.]

18. Obtain the rectilinear asymptotes of the curve

y
2(x2 - y

2
) - 2ay3 + 2ci3x= 0,

and the parabolic asymptotes of

y
4 - 2xy2(x + a) + (x -t a)x3= 0. ^Oxford, 1887. ]

19. Form the equation of a quartic curve which has asymptotes

x-y= 0 and x + y» 0, the curve being supposed to approach each

asymptote at one extremity only, but from.both sides of that asymp-

tote, and also to touch the axis of y at the origin.
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20. Form the equation of a quartic curve with asymptotes y - 0,

x + y = 0, x-y = 0, the curve being supposed to approach y = 0 from

opposite sides at the same extremity, but the other two asymptotes

from the same side and at opposite extremities in each case. The
curve is also to touch the axis of y at the origin and to pass through

the point (2a, a).

21. Find the equation of a,, curve of the fourth degree which has

two coincident asymptotes x 1, an asymptote x-y=l and a

fourth parallel to this, and of which the origin is a double point, the

branches touching the axes of co-ordinates. [Maui. Tripos, 1887.]

22. Find the equation of a quartic which has y=-±x± 1 for

asymptotes, which cuts the .r-axis in four contiguous points at the

origin, and the yaxis in three points (other than the origin), for

which the product of the ordinates is - 1.

23. Obtain #16 asymptotes of"the curve
(y

- b)(y - c)x* — a2
//-, alld

find upon which sides of the asymptotes the curve lies.

* a3

24. Show that the curve y + ^
= 0 is asymptotic to the

folium of Descartes xs + y
3 -= 3axy. Hence find on which side of the

linear asymptote the cuivc lies.

25. For the quartic tu 1 - hy* + r \vy - 0 show that

a* c 1 cG

y — x - - R ,
••• -

b l 4a~b 2x 4-. 1 . 2(Hb 4xs

r

Draw the asymptotes, and deteimine on which sides the curve lies.

[Vino*
, Fluxions; Peacock.]

20. Find the asymptotes of the quartic •

(y
2+^){(^-i)‘2+^}+Ky+«) -o,

examining in the several cases on which side of the asymptotes the

curve lies. [A. Beer.]

27. In the curve y
B = 6xhy + x6 there are no rectilinear asymptotes,

but the curve is asymptotic to the parabola y - x2 + 2x.

28. Find the asymptotes of the curve y(y - x)-(y + 2x) = 9cx3*,

showing that the parabola (y - x + 2c)2 - 3cx is asymptotic to the

curve. [Frost, Curve Tracing.]

29 Show Jhat the curve •

1 * (y-2x)2
(y + x) + (y + 3x)(y -x) + x= 0

has a parabolic branch to which 3y
2 - \2xy + 1 2x~ + 5a:= 0 is a first

approximation, and to which the parabola 3(y - 2sc + *^|)
2 + 5x = 0 is*

asymptotic,?
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30. Find the rectilineal asymptotes and the parabolic branches at

infinity of the curve

(y - x)
4+ (y - a?)

2
2y + (y - x)(Zx - y) - 2x - 2y + 1 = 0,

and find the position of its points of intersection with

(y - xf + x + y = 0. [Oxford, 1888.]

31. Find the asymptotes of the curro

r(sin a - sin 0) = a sin a cos 0.

Examine the case when a becomes a right angle.

[Wolstkniiolme, Educational Times.]

32.

'Show that a cubic curve with a double point cannot have

parallel asymptotes. A cubic has three given asymptotes which

form an cqudateral triangle. Show that if the curve possess a cusp

it must lie on the inscribed circle of.the triangle.

» [MATjnfSfcffos, 1890.]

33. If the equation of a curve be writter?

-0

and if <£w(^i)-0, <£„'(/*,) -0, = and 4>n-M = 0, show

that there are two parallel asymptotes equidistant from the origin,

whose equations are

V'nfal)

34.

Show that the first approximation to the difference of the

ordinates of the curve

and its rectilinear asymptote y = fix + /3 for a point whose abscissa

is x is

assuming that no other asymptote is parallel to this one. Show

from this result that the curve at opposite extremities is in general

also on opposite sides of the asymptote.

35.

Prove that an algebraic curve of the n* degree* represented

by the equation

x*a(z) *
~ l

Az) + + •• • =

°

has two parallel asymptotes, provided Mp), /o(p)t /i(m) vanish for
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the same value of y; and that the approximations to the correspond*

ing infinite branches of the curve are given by

y = px+ v

-

{^/o'V) + + v/t 0*) +fM}l*{v/a

(

h) +/i'0*)}.

where v is a root of the equation

i^/oV) + vA'(p) +/2(/*) = 0.

Find also an approximation fpr the case of equal roots.

[Math. Tripos, 1888.]

36. Show that the asymptotes of the general curve of the n** degree

(«<» «i» •••» <*«$*» y)
B +‘ M(Jo. *i» y)"

_, + ••• =o
will all pass through one point if

a0t a
l9 a2, #„_i

aU a27 a
3l •••> an

~®
9

K &1> ^2) •••» ^»-l

and that the co-ordinates of that point are

flfi&i — &<£)q Oyb0 — G0bl'

Olefin — Qt\ — fl]
2

[The notation
(
a0J al9 ..., x, y)

n
is used for the general binary

quantic of the nth degree, viz.

a^c* + >uilx
n~ 1

y +—
2
^— + . . . + aj/n. ]



CHAPTER IX.

SINGULAR POINTS.

271. Concavity. Convexity.

In the treatment of plane curves the terms concavity and

convexity with regard to a point arc applied with their ordin-

ary signification. Thus', for example, any arc of a circle is said

to be concave to all points within the circle ; whilst to a point

without the circle the portion lying between that point and

the chord of contact of tangents drawn from the point is said

to be convex and the remainder of the circumference concave.

272. In general the portion of a curve in the immediate

neighbourhood of any specified point lies entirely on one side

of the tangent at that point. This is clear from the definition

of a tangent, which is considered as the limiting position of a

Fig. 34.

chord. There is an ultimately coincident cross and recross at

the point of contact, as shown a* the ultimately coincident

points P, Q in fig. 34 ;
so that the immediately neighbouring

portions AP, QB must in general lie on the same side of the

tangent PT.

273.

We may thus give the following definition of concavity

and convexity. Let P be any point of a curve in the midst

of continuous curvature. Let A and B be two points near

together on the same branch of the curfe passing through P,

but on opposite sides of P. Then in the limit when the arc
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AB is indefinitely diminished the curve is concave in the

immediate neighbourhood of P to all points on the same side

of the tangent as the arc APB and convex to all points on the

opposite side.

274. Point of Inflexion. Stationary Tangent.

The kind of point discussed in Art. 272 is an ordinary point

on a curve. It may however happen that for some point on

the curve the tangent, after its cross and recross, crosses the

curve again at a third ultimately coincident point. Such a

point can be seen magnified in Fig. 35.

Fig. 35.

In this case it is clear that two successive tangents coincide

in position : viz., the limiting positions of the chords PQ, QR.

The tangent at such a point is therefore said to bo “ stationary”

and the point is called a “point of contrary flexure
99

or a

“ point of inflexion ” on the curve. The tangent on the whole

crosses its curve at such a point, and the curve changes front

being concave to points on one side of the tangent to being

convex to the same set of points.

275. Point of Undulation.

Again, there may be a point on the curve for which the

Fig. 36.

tangent crosses its curve in four ultimately coincident points,

jP, Q y
R, 8, as seen magnified in Fig. 36, and the point is then

called a upoint ofundulation
” on the curve. There are now

three contiguous tangents coincident, and the tangent on the

whole does not cross its curve. And it is clear that singular-

ities of similar character but of a higher order may arise.
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276. AxUytic&l Tests. Concavity and Convexity*

It is easy to apply analysis to the investigation of the form
of a curve at any particular point.

Let us examine the point x
, y on the curve y = $(#).

Let P be the point to be considered, P
1
an adjacent point on

Fig. 37.

the curve. Let PN> P
1
X

1
be the ordinates of P and Pv and

suppose P
1
N

1
to cut the tangent at P in Qv Then ON=x,

JSrP=y= <t>(x).

Let ON^— x-\-h,

then jVjPi= <p(x+ h)

= <p{x)+h4>\x)+
}

yf(x)+ (1)

by Taylor’s Theorem. Again, the equation of the tangent at

Pis * y-y= f(xXX-x\
Putting X=x+h

we obtain Y=y+ h<p\x)= <j>(x) +h<p'(x), (2)

which gives the value ofNXQV
Hence the ordinato of the curve exceeds the ordinate of the

tangent by

N^-N^Jy^+^’Xx)+ (3)

Now, if h be taken sufficiently ^nrjtall, the sign of the right-

hand side will be governed by that of its first term
;
and this

term does not change sign with h because it contains an even

power of h, viz., the square. Hence, in general, on whichever

side of P the point P
2
be taken, P\Pi—^iQi will have the

same sign—positive if <j>'(x) bo positive, and negative if <p>"{x)

be negative
;
and therefore the element of the curve at P is

convex or concave to the foot of the ordinate at P according as

<j>'(x) is positive or negative . ,
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We have drawn our figure with the portion of the curve

considered above the axis of x. If, however, it had been below,

the signs of
1̂
P

1
and would both have been negative and

we should have had the contrary result. But observing that

<f>(x) is positive for points above the axis of x, and negative for

points below, we may obviously state the unrestricted rule that

the elementary portion of the curve y= (f)(x) in the neighbour-

hood of the point (x} y) is convex or concave to the foot of the

ordinate according as t)tp"(x) or y^

~

2
is 'positive or negative.

277. Points of Inflexion.

If </>"(x)=:0 at the point under consideration, we have
7,3 7,4

and, as before, the sign of the right-hand side, when h is taken
sufficiently small, is governed by the sign of its first term.

But this now depends on A3
, and therefore changes sign with h

;

that is, the ordinate of the curve is greater than the ordinate

O N N, X
Fig. 38.

of the tangent on one side of P, but less on the other. The tan-

gent now crosses the curve at its point of contact, and the pomt
is ofthe kind described in Art. 274,and called apoint ofinflexion.
A necessary condition then for a point of inflexion is that <p'\x)

if not infinite should vanish, and the sign of determines

the character of the inflexion
;
for (assuming the element above

the axis of x) if <p"'(x) be positive, changes from
negative to positive in passing from negative to positive values

of A: i.e.
t in passing through P the change is from concavity

to convexity with regard to the foot of the ordinate. But if

</>"(&) be negative, the change is from convexity to concavity,

and this latter is the case represented in the figure.
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278. Point of Undulation.

Again, if 3)=0 at the same point, and ^(x) do not
vanish, the first term in the expansion of Pi—NxQi depends

on and therefore this expression does not change sign in

passing through P. The tangent therefore on the whole does

not cross its curve at P. The point is of the kind described in

Art. 275 and called a point of undulation.

279. Higher Degrees of Singularity.

It will now appear that, if by two successive differentiations

a result of the form

^=A(x- a)2n(x- 6)
2m+1

be deduced from the equation to the curve, although

vanishes both at the points given by x— a and by x= b, yet it

only undergoes a change of sign wheii it passes through x= 6,

the index of the factor a?— 6 being odd. Hence at the points

given by x= a there is no ultimate change in the direction of

flexure, while at those given by x= b there is a change. The

points given by x= a look to the eye like ordinary points on a

curve, while those given by x= b resemble points of inflexion,

and indeed have been for distinction called by Cramer points

of visible inflexion * although the singularity is of a higher

order than that described in Art. 274, which is the case of

m= 0. If n= 1, the points given by x= a are points of undula-

tion, such as described in Art. 275. So thatfor an Inflexional

d2u
Point the condition = 0, though necessary , is not sufficient.

The complete criterion is that should change sign. If

vanish
,
but do not change sign ,

the curve at the point under

consideration is undulatory.

280. Case when the Tangent is parallel to the y-axis.

The test of concavity or convexity has been shown to depend

upon the sign of
^Jj[.

In the case, fiowever, of an' arc, the tan-

gent to which is parallel to the axis of y,
the value of^ and

*Dr. Salmon, Higher Plant Curvet, p. 35. Cramer, Analyte det Idgnet Courbet,

Geneva.
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of all subsequent differential coefljpents is infinite. But in

this case it is obvious that it would be convenient to consider

y instead of x for the independent variable, and then the sign

of
dy2

will test the concavity or convexity to the foot of* the

ordinate drawn from the point under consideration to the axis

of y-

Similarly, at a point of inflexion at which the tangent is

parallel to the axis of y> 2
must change sign.

ay
And in other cases whenever it is more convenient to use y

instead of x for our independent variable, we are of course at

liberty to do so with an interchange of the letters x and y in

the formula quoted.

281. The test for concavity or convexity may also be investi-

gated as folloivs :

—

Let P be any point of the curve, co-ordinates x and y. Let

the adjacent points on the curve Px
and P

2 have co-ordinates,

(a?— A, yx) and (x+ h, respectively. Let the ordinate of P
cut the chord P

X
P

2
in Q. Then if h be made infinitesimally

small, the portion of the curve in the immediate neighbourhood

of P will be convex or concave to N, according as JVP is < or

Vi+V*
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so that the criterion depeng^ upon whether

y be<or> 2/+Ug+... )

and .proceeding to the limit the curve is convex or concave to

N according as is positive or negative.

Ex. 1. Consider the curve y— 2s/ax. Ifit convex or concave to the foot of
the ordinate ?

Here

and

Hence y*-- is negative for all positive values of x (and negative values of
' dxP

x are not admissible), so that the curve in the neighbourhood of any

specified point is concave to the foot of tlie ordinate of that point.

Ex. 2. Consider the curve x~yi+ 3y
8
. lias i} a point of inflexion ?

Here “^=6(y+l),

a
x'

so that ??£ changes sign as y passes through the value y— -

ay“

the point (2, - 1) is a point of inflexion on the curve.

dif

1. Therefore

282. Convexity and Concavity of a Polar Curve.

Suppose the equation of a curve to be given in polar co-

ordinates as u=f(6), and that it is required to find a test of

convexity or concavity towards the pole.

Let 0 be the pole, P the point of the curve to be examined.

Let the co-ordinates ofP be denoted by r, 6, and let A, B be

two points on the curve adjacent to P, and one on each side of

it whose co-ordinates are respectively (rv 0— S6) and (r
2/0+<S&).

Then the curve in the immediate neighbourhood ofP will be

concave or convex to 0 ,
according as ’•

AAOP+ABOP is > or < AAOB
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when we proceed to the limit. T^|t is, according as

VjT sin 50+rr2sin SO > or < r^sin 2SO,

or r{r+rr2 > or < 2r
1r2cos 50

;

i.e., as Ug+'M'i > or < 2u cos 50,

where we have written r, = , etc.

Now, by Taylor’s Theorem,

,
du

SCk d2u SO2 .

w.2-M.+
3(9

50+
d02 2!

+->

and therefore

'dusa cPu S62
Wl-U

d6
Se+ d& 2!"

/ d2u 502 N
tti+tt2=2^+^ 2T+...>

whence we have concavity or convexity to the pole according

and proceeding to the limit according as

U+W2
is > or < °-

283. Polar Condition for a Point of Inflexion.

At a point of inflexion the curve changes from doncavity

to convexity, and therefore the necessary condition is that

should change sign.

Ex. Find the 'point of inflexion on the curve r-

Here au~ (fi,

therefore — 9~%.

=a0~^.

Hence, putting

to find for what value of $ a change of sign can occur, we have

#-£0-*=(V

And the positive value only is admissible, giving *

r=a^2\

as the polar co-ordinates of the point of inflexion.
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284. Condition for Ped|£ Equations. •

It will be obvious from a figure that for an element of a
curve which is concave towards the pole p and r increase or

decrease together. But for convexityp increases as r decreases

and vice versa. Thus for concavity jr is positive
;

for con-

vexity negative. »

At a point of inflexion ~ changes sign.

285. This condition is deducible at once from the polar condition, for

since

1 dp_ - d2u
p*dvT

n
+de\

.
d2u r2 dp

°T
.

W+
-dPV dr

whence the result follows immediately. •

Examples.

1. Show that the curve y =e* is at every point convex to the foot of the

ordinate of that point.

2. Show that for the cubical parabola

a2y=(x—by
there is a point of inflexion whose absciss«a is h.

3. Show that there are points of inflexion at the origin on each of the
I fjQ

curves (a) y=oc cos -.

(/?) y=atan|.

(y) y=^log(l -x).

4. Show that there is a point of inflexion on the curve

at the point (8, e2).

5. Show tliat every point in which the curve of sines

cuts the axis of x is a point of inflexion on the curve.

6. Determine the nature of the point where a?=6 on the curve

(y-a- x)*=a{x— bf.

7. Show that the curve
t

(y-a)3s=as -2a8^+flw?2 *

is always concave towards the foot of the ordinate. How is it situated

with regard to points on the y-axis ?

8. Ascertain whether the spiral >
#

r cosh 0~a
is convex or concave towards the pole.
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9. Show that if the origin he a point of inflexion on the curve

w
l “h w2 “h w3+ . . . = 0

u% will contain ut
for a factor.

10. Show that there is a point of inflexion at the origin on the cubic

y—axy+ by1
4- c*3.

11. Show that there is a point of undulation at the origin on the curve

y= ajA + bx2y
2+ cy\

12. Find the positions of the points of inflexion on the curve

12^— .r
4 — 16.r3+42^2 4* 12#+ 1.

13. Prove that the curve

y— be

has a- point of inflexion given by

V n

14. Prove that the point
^

-
2, )

is a point of inflexion on the curve

y= xe?.

Multiple
1

' Points and Tangents.

286. Nature of a Multiple Point.

A singularity of different nature from those above described

occurs on a curve at a point where two branches intersect, as

at the point A in the accompanying figure. It will appear

from an inspection of the figure that at such a point as the one

drawn there are two tangents to the curve, one for each branch.

Each tangent cuts the curve in two ultimately coincident points;

'inch as P, Q on one branch, and it incidentally intersects the

other branch through A in a third point R, ultimately also

coinciding with A. Each, tangent therefore at such a point

intersects the curve in three ultimately coincident points at the

point of contact; and^if the curve be of the 71
th degree,. each

tangent will cut the curve again in n-r 3 points real or imagin-

ary. In this respect the tangent at such a poi^fc resdmbfts the

•tangent at a point of inflexion, for (Art. 274) the point of con-

tact of a tangent at a point of inflexion counts for three of the

w intersections of the line, with the durve.
^
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287. Points through which more than* one branch of a curve

passes are called “multiple points” on the curve. If two
branches pass through the point A, as in the above figure, A is

called a “ double point” If three branches pass through any

point, that point is called a “ triple point” on the curve
; and

generally, if through any point r branches of the curve pass,

that point is referred to as a “ muitiple point of the r**
1 order

”

on the curve. From what has been said with regard to the

tangents at a double point it will* be obvious that there are r

tangents (real or imaginary) at a multiple point of the r

^

order,

one for each branch. At such a point each of these
t
rjt&ugente *

cuts its own branch in general in two points, and eachjrf the

inonepolrdf: i.e., in r+1 points altogether, Jill

ultimately coincident with the iriultiple point. Such a tangent

therefore cuts the curv7e in n—r— 1 other points real or imagin-

j
ary. But if at the multiple point there happen to be a point

I

of inflexion on the branch considered, the tangent will cut that

f branch in three points instead of two at the point of contact,

making r+ 2 points of intersection with the curve at the mul-

,| tiple point, and therefore reducing the remaining number of

j points of intersection to n— r— 2.
*

288. Species of Double Points.

Consider the case of a double point. The tangents there

may be real, coincident or imaginary.

Case 1. If the tangents be real and not coincident, there are

two real branches of the curve passing through the point, and

tEeTpomt is calfeJaffi

Case 2. If the tangents be imaginary, flhere are no real points

on the curve in the immediate neighbourhood of the pointJpn-

'

side^fcrlflKr ^a^eT”along the curve from su'ch

apouiii in anjnial direction. Such a point
-

is therefore simply
an isolated p6int, whose co-ordinates saMafv theoquatlon to the

curve, and i's called .a " cofijugate point
”
or “ acn&de.

'
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Case 3. If the tangents, at the double point be coincident,

the two branches of the curve will touch^at thfiLpoint

sidered. The point is then in general of the character called a

stationary point, cusp ox spinode.

289. Two Species of Cusps.

There are two kinds of cusps, as shown in the accompanying

figures.
r

.,T

Kg. 43. Fig. 44.

(a) In fig. 43 the branches PA, QA lie on opposite sides of

the tangent at A. This is referred to as a cusp of the first

species or a keratoid cusp (i.e., cusp like horns).

Q3) In Fig. 44 the branches PA, QA lie on the same side of

the tangent at A. This is called a cusp of the second species or

a ramphoid cusp (i.e., cusp like a beak).

290. A Multiple Point can be considered as a Combination of

Double Points.

A triple point may obviously be considered as a combination

of three double points, for of the three branches intersecting at

the point each pair form a double point at their point of inter-

section. And in general a multiple point of the rth order may
4 r(r— 1)

be considered as the result of the combination of- —

~

double

points, since this is thd number of ways of combining the r

branches two at a.time.

291. To examine the Natufe of the Origin.

If the. equation of a curve be rational and algebraic, it may

be written in the form

;
+b

l
x+b

2y

+<^+ 0^+ 0$*

* + 1̂ *4^^+- #^+1^=0 ••(a)
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If this be put into polar co-ordinates it becomes
a

+r(b
1
coB 0+&2sin 0)

« +r^qcos2©

+

c2cos 0 sin 0+ casin
2
0)

+ ...

+rn(&1
cosn0+fc2cos

n '* 10 sin 0+ ...+ &n+1sinn0)=:O (B)

Let 0 be the pole and OA the initial line. Then equation

(b) gives the points Pv P2, Ps ..., in which a radius vector

o
Fig. 45.

OP^..., making a given angle 0 with OA, cuts the curve.

The roots of this equation are 0PV OP2, 0P3, ....

It is clearly of the nth degree, and therefore has n roots.

These may, however, become imaginary in pairs.

I. If a= 0 it will be obvious from either the Cartesian equa-

tion (a) or the Polar equation (b) that the curve passes through

the origin 0. In this case one root of the equation (b) is zero,

and in Jhe figure OP
1= 0.

II. In this case, if 0 be so chosen as to make
6
x
cos 0+

&

2
sin 0=0,

a second root of the equation (b) vanishes, and therefore we

infer that a straight line making an angle ^ with the

initial line cuts the curve in two contiguous points at the origin,

and therefore is the tangent there. The Cartesian equation of

this line is obvious upon ipultipJying by r, viz.,

*4" b2y “ 0.

Hence if>»4uvve pass through the origin, the terms o£ first

degree (if any such exist) on being equated to z^ form tke

equation of the tangent at the origin. (See Art. 197.)
*

iiinr and 62 =0, then in general it is possible

to choose & so that

c^os^+cfecos 0 sin 0+CgSin20=O,

and then three roots of equation (b) willVanish
;
that is to say,

of the pair of lines whose‘equation is = 0 each
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cuts the curve at the origin in three contiguous points. Thetfe

are therefore two branches of the curve intersecting a$ the

origin, to each of which a tangent can be drawn, and of the

three contiguous points in wJtdchJbtiiasJaeep seen that each nf

tliese tangents cuts the curve twp„lie._oii. one branch and the

other on the remaining branch. The origin is in this case a
Soiible point on the curve?and the terms of lowest degree in

the equation of the curve, viz.,

c^+cfly+CM2
,

when equated to zero form the equation of the tangents at the

origin. The tangent of the angle betiueen these straight lines

is given by tan $= ~2
•

-

If c2
2> 4^3,

the tangents are real and not coincident, and there

is a node at the prigin.

If c2^= 4c
1
c3> the tangents are coincident, and the two branches

of the curve touch, and there is in general a cusp at

the origin.

If c
2
2 < 4c

1
c3,

there are no real tangents at the origin, although

the co-ordinates of the origin satisfy the equation of the

curve
;
there is then a conjugate point at the origin.

If -f c3= 0
,
the tangents at the origin intersect at right angles.

IV. Jf a= 0
, b1= 0

,
fc2= 0, c

x = 0, c2= 0, c3= 0, the origin is a

triple point on the curve, and (as shown in III. for the tangents

at a double point) the tangents at the origin are

dxx
3+ dfl?y+ d3xy

2+ d±y3— 0.

V. And generally, if the lowest terms of an equ^jp^ are of

the degree, the origin is a "multiple yoint of the^r^Qxdex”

o^f^e curve. and^the terjpas-, of. th^,rtE degree equated to zero

give the r tangents there.

292. To examine the Character of any Specified Point on a Curve.

Results similar to those of the preceding article may be

deduced for any point on the curve.

CO
'

'(/ —— Jc

Let the straight line —
j
—=- =p be drawn through a

, L m
giyen point (h, k) to cut the curve f(x, y)=0. Then

x=h+lp, x

y-k+mp.

c£— 4cjG3
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The use of these equations is obviously equivalent to a double

transformation of co-ordinates, the first to parallel axes through

h, k, the second to polars.

Substituting for x and y in the equation of the curve we

obtain /(h+lp, k+mp) = 0

to find the pointspv p2,.. in wjiich a radius vector through

the point h, k cuts the curve.

.If this be expanded by the extended form of TaylorY

Theorem, the equation becomes

f(
h, k,

+

^

+

>'4)
'/+ . .

.

which is exactly analogous to equation (b) of Art. 291, and

corresponding results follow.

I. If f(h, k)= 0, one root of the equation for p vanishes and

the point h, k lies on the curve (which is otherwise obvious).

II. In this case, if the ratio l:m be now so chosen that

then another root vanishes, and this relation gives the direction

of the tangent, whose equation is therefore

as found in Art. 191.

III. But if |jr = 0 and ^=0, as well as f(h, k) = 0, then all

lines through h, k cut the curve in two contiguous points.

But if the ratio l : m be so chosen that

l
dh2

+ZCm
dhdk

+m J,

we have in general, as in Art 291, III., two directions in wh\ch

a radius vector drawn through (A, k) cuts the curve in three

contiguous points. The point (h
,
k) is a double point on the

cjw3jincej^ ,pa$s through.this point

;

and of the three contiguous points in which each of the above-
‘ B.D.C.
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mentioned radii vectores meets the curve, two lie on one branch

and one on the other. The equation of the two tangents is

IV. Further, if |p=0, ^^=0, and ^=0, in addition to

^=0, ^= 0, and f(h, k)= 0, identically for the same values of

h, ky and if on going to terms of the third order we find that

all these do not identically vanish,, the point (h
y
k) is a triple

point on the curve.

Y. And generally the conditions for the existence of a mul-

tiple povat of the rth order at a given pointJi,Jc of the curve

an? ttat JQc, jy)
and all its differential coefficients up to those

of the (r— l)
th order inclusive should vanish, when #==A and

y= kf and then the equation of the r tangents at that point

will be

293. Special Case of Double Point.

Recurring to the case of a double point at a point (li, k)
}
since

the equation of the tangents is

(»-*>£{+*(«-AX»—*^E+<»— *>’$=<>.

the angle between these tangents is given by

and the point h, k is a node or conjugate point according as

(d2/\ 2
. > d2f d2f

,
\dhdk)

18 < dh* ' dtf'

and is vn general a cusp if

/ <Z
2/\2

_ 32/ 32/
\dhdk) dh>* "did*

with the preliminary conditions in each case that

/(M)“ 0, |£=0, and g^O.
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We say in general a cusp

;

for it will be seen that in some
cases when the above conditions hold the mry&Jjficomes imagin-
ary in the neighbourhood of the 'point considejfid, which must
CEeiefore SeTclassed as a conjugate point. In the case of the

coincidence of tangents, further investigation is therefore neces-

sary. The mode of procedure is indicated below in the method

for the investigation of the charact^V of a cusp. It appears that

/ 02/\ 2

= 3
2/ ay

xdx'dy) dec1
*

a?/2

represents a curve which cuts fix, y)= 0 in all its cusps
;
and

that H+5-“°.
is a curve which cuts f(x, y)=Q in all the double points at

which the tangents are at right angles.

294. Tamx&Jox
The rule therefore to search for double points on a curve

f(x, y) =0 is as follows. Find and ^ ;
equate each to zero

and solve. Test whether any of the solutions satisfy the equa-

tion* of the curve. If so, apply the tests for the character of

each of £Ke points denoted, i.e., try whether

(W V h >&t .

Xdxdy) < a*2 ai/2
*

295. To discriminate the Species of a Cusp.

Method I. Suppose the position of a cusp ,to have been

found by the foregoing rules. Transfer the origin to the cusp.

The transformed equation will be of the form

(ax+by)*+uz+u i
+... = Q, (1)

where ax+by— 0 is the tangent at the origin, and u3,
uv ...

are homogeneous rational algebraical functions of x and y of

the degrees indicated by their respective suffixes.

Let P he the length of the perpendicular drawn from a point

x, y of the curve, very near the cusp, upon the tangent

ax+by — 0.

p ax+by «

sftf+W '
Then (

2)
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If y be eliminated between equations (I) and (2), an equation

is obtained giving P in terms of x. It is our object to consider

only the two small perpendiculars from points on the curve

near the origin, and having a given small abscissa x

;

hence in

comparison with P2 we reject cubes and all higher powers of

P and also all such terms as P2x
}
P2x2

t
... which may arise on

substitution.

Fig. 46.—Single cusp, first fepccies. Fig. 47. —Single cusp, second species.

Fig. 49.—-Double cusp, second species.

(
Fig. 50.—Double cusp, change of species. Osculinflexion.

We shall then have a quadratic to determine P. If, when x is

.made very small, the roots be imaginary, the branches of the

curve through the origin are unreal, and therefore there is

a conjugate point at the origin. If the roots be real, but of
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opposite signs, the two small perpendiculars lie on opposite

sides of the tangent, and there is a cusp of the first species at

the origin. If the roots be real and of Wee sign the perpendic-

ulars lie on the same side and the cusp is of the second species
,

and the sign of the roots determines on which side of the tan-

gent the cusp lies.

Complete information is also afforded by this method as to

whether the cusp is single or double, i.e., as to whether the

branches of the curve extend from the cusp towards one

extremity only of the tangent, or towards both extremities

as shown in the annexed figures.

The reality of the roots of the quadratic for P will in some

cases depend upon, and in others be independent of the sign

of co. In the former cases the cusp is single; in the latter,

double. Moreover, if’ double, we can jletect whether the cusp

is of the same or of different species towards opposite extrem-

ities of the tangent. When the cusp is of different species

towards opposite extremities the point is called by Cramer a

point of Osculinfiexion.

In adopting the above process it will clearly be sufficient to

put P=ax+by,
thus dropping the \/a2+b2 for the sake of

brevity; the effect of this being to consider a line whose length

is proportional to that of the perpendicular instead of the per-

pendicular itself.

Ex. 1 . Examine the character of the origin on the curve

a* - 4x2
y — 2xy2 + 4y2— 0.

Here tlie tangent at the origin is y =0. According to the rule put y—P.

The quadratic for P is

P-(4-2x)-4P.r2+ x4 ~0.

The roots of this equation are real or in iginary according as

4xA is > or < x\4 - 2x),

i.e., according as x is positive or negative. Hence the cusp is
“ single

”

and lies to the right of the axis of y. Moreover the product of the roots

is
4 — 2x

and is positive when x is very small, and the roots are therefore

of the same sign. The origin is therefore a single cusp of the second species.

Moreover the sum of the roots is positive, so that the two branches near

the origin lie in the first quad/rant.



230 CHAPTER IX.

Ex. 2. Examine the character of the curve

a?- Z&y - &ry2 4- §y 1=

0

at the origin. Here y=0 is a tangent at the origin. Put y~P. The
quadratic for P is

9 -3*)- 3x2P+xl=0.

The roots are real or imaginary according as 9x* - 4(9 - 3x)x* is positive or

negative, i.e., as -27.^4- 12^ is positive or negative.

Now, when x is very small, a?
f

is negligible in comparison with and
therefore the above expression is negative for very small positive or nega-

tive values of x. The roots of the equation for P are therefore imaginary,

and the origin is a conjugate point on the curve.

Ex. 3. Examine the character of the curve

2m+l

y= F{x) ± (x - h)'2n'f(x) (1)

in the neighbourhood of the point x—h, y= F(h\ m and n being positive

integers.

By Taylor’s Theorem we may write

F(x4-h)~ h\h) 4- ax 4- b.v2 4- . . .

anti
# [Ax+ 4- bxx+ . . .

,

where a
x
being [fih)Y is necessarily positive.

Hence on transforming our origin to the point {

h

, F{h)} we obtain for

the transfoimed equation
2m+!

(y-ax-bx2 ~...)2—x " («i+ &i.r4-...) (2)

Examining the form of the curve at the origin, there are obviously coin-

cident tangents if he > 2.

Puty — ax=P, then
2m+1

P2 -2P(bsc2 + ...)+b2j?-aiX n -...=0.

That the roots of this quadratic are real, if x be positive and small, is

obvious from equation (2) ; also, that the roots are imaginary for small

negative values of x. There is therefore a single cusp extending to the

right of the new axis ofy.
2m+JL

Again, the product of the roots

=

b2a? - axx n — ....

If > 4, this product has the same sign as xi when x is taken
n *

sufficiently small, and therefore is positive, giving a cusp of the second

2m 4-1
If < 4, the term - axx n

is the important term in the product

and is negative, x being positive. There is therefore in this case a cusp of

the first species.

We have assumed that the coefficient b or is not zero. If how-
22 !

ever this coefficient vanish, it is easy to make the corresponding change

in the subsequent investigation.
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Ex. 4. Examine the nature of the double point on the curve

(x+y)*- J2!y -x+ 2)*=0.

Here |£=3(*+y)s+2 V2(y-*+2)==0^|

^=3(x+y)a-2j2(y-x+2)=0.
|

These give

and y-x+2=0,J

*=1
« \

Now this point obviously lies upon the curve, and there is therefore a

multiple point of some description there.

Again, '^-$=6(x+y) - 2J2= - 2^2 at the point (1, -
1),

^=6(x+y)-2 N/2=-2 N/2,

=6(x+y) + 2 s/2=2j2.

Hence at this point 0^=^)-’
and we have a double point at which the tangents are coincident.

Next, transforming to the point (1, - 1) for origin, the equation becomes

(x+yf- J2(y -.r)2= 0.

According to the rule we put ?/ -x=P. Then rejecting terms in P3 and

lylx we have P2 - Gx3 J2P— 4.x3 *J2

—

0.

The roots are real if 1 8x*+ 4 J2X3 > 0,

whjph is the case if x be very small and positive. There is therefore a

single cusp at the point (1, - 1).

Again, the product of the roots= - 4xt

^2, and is negative when x is

small. This indicates that the cusp is one of the first species,

[This curve is obviously only a transformation of the semi-cubical para-

bola ?/
2=jp3.]

32
</>

'bxdy

Ex. 5. Search for a multiple*point upon the curve

&7+ 2x*+ 2spy+ 2X3+ x*+ y +y 2+ 2x+ 2y+ 1 = 0.

Here ^=7xa+8x3+6xly^6xa+2x+2y+2=0. ....

^=2x3+2x+2y+2=0.

From the second equation y= -x3 -x-l.

Substituting in (i. ) 7^°-6^=0,

whence #=0 or f,'
•

and therefore y=-l or — 1||.

.(i.)

,(ii.)
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It is obvious that the latter solution cannot satisfy the equation to the

curve.

Transforming to the point (0, - 1 ), the equation becomes

x7+

+

%&y+ (r+y)
2= 0,

indicating that there is either a cusp at the new origin to which x+ty=0
is a tangent, or a conjugate point.

Put x+y—P
t
then In -f 2/lr3+x7 = 0.

The roots will be real if x°- x7 is positive, which is true when x is positive

and less than 1, and also when x is negative. Hence there is a double cusp.

The product of the roots is x7
9
which is positive or negative according as x

is positive or negative. It is therefore ramphoid on the right-hand side

of the nowy-axis and keratoid on the left-hand side, and therefore there

is an osculinflexion. Also the sum of the roots is — 2x'\ and is therefore

positive when x is negative
;
hence on the left side of the new y-axis the

upper portion of the curve deviates from the tangent more rapidly than

the lower portion.

296. Method II, Another method of discrimination of the

species of a cusp depends upon the test for concavity or convex-

ity. Find the two values of (or see Art. 280). If these

have opposite signs very near to the cusp, the two branches

starting from the cusp are in general one concave and the other

convex to the foot of the ordinate, and the cusp is of the first

species. But if the signs he the same
,
the two branches are

either both concave or both convex to the foot of the ordinate,

and the cusp is of the second species . In the case however

when the #-axis is a tangent at the cusp, the cusp will^be

keratoid when both branches are convex to points on the axis

of ~ are of
dxz

near the cusp. But in this case the values

opposite sign. Hence the above test still holds.

Ex. Discuss theform of the curve y=x±x^ at the origin.

Here y2
=^ ±3/4 v/#.

Hence only positive values of x are admissible and the two values of y.2

ii^ye opposite signs. The origin is therefore a single cusp of the first species.

297. Singularities on the Reciprocal Curve.

Since to a tangent to a curve corresponds a point on its

polar reciprocal, it will be evident that to the points in which

a straight line cuts the one correspond the tangents which can

be drawn from a given' point to the other. If the one has a

multiple point of the p

^

order the other has a multiple tangent
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touching its curve at p distinct points
;

to a double point on
the one corresponds a double tangent or bi-tangent to the other

;

to a stationary point on the one corresponds a stationary tan-

gent on the other.

These considerations tend to show that the multiple-tangent

should be classed as a distinct singularity. *

Examples.

1. Show that for the semi-cubical parabola

ayr—A*

the origin is a cusp of the first species.

2. Show that the origin is a cusp of the fu st species on the curve

<t(y-x)2 =x*.
3. Show that the curves

?/“— arsin tr~ .r*tan
J/

J a 'l a

have cusps of the first kind at the origin.

4. Show that at the origin on the curve •

.» 7 X •

y-—bx sm
a

there is a node or a conjugate point according as a and b have like or

unlike signs.

5. Show that for the Cissoid if
1——

^

* m2a-x
the origin is a cusp of the first species.

6. Examine the nature of the point on the curve

;?/-2=.> ,

( 1 H-.i-f.r-)

where it cuts the y-axis.

7. In the curve a3/2 - 2abx2

y—xA

show that there is ail osculiuflexion at the origin. [Ckamer.]

8. Search for the double point on

(y-2)-W(.r-l)a
,

and find the directions of the tangents there.

9. Determine the position and species of the cusps of the following

curves :

—

(a.) (2y+.r-f l)
a
* 4(1 -xf,

(f>.) (y+*), -(y-...I’=l,

(<?.) xy2
-f 2oPy — ax- - 3<xrx - 3

a

3= 0.

10. Examine the nature of the point ( - a, a) on the curve

x4 - ay3 -f 2ax2
y + 4a& -f 3a2

y
2
-f 4dlxy -f 4«2.r

2 - a*y

—

0.

1 1. Show that at the point ( - 1,
- 2) there is a cusp of the first species

on the curve .r
3+ 2x2+ 2xy - ?/

2
H- bx - 2y= 0.

1 2. Show that at 6ach of the four points of intersection of the curve

with the axes there is a cusp of the first ‘species.
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13. Show that the origin is a conjugate point on the curve

x* - ax^y 4* axy^+cfty1= 0.

14. Show that at the origin there is a single cusp of the second species

on the curve x* - 2ax*y - axy1+ d2
y

2= 0.

15. Show that the curve y
2= 2xry + 3?y+x3

has a single cusp of the first species at the origin.

16. Show that the curve y
3—

2

x2
y + o^y+ .r

4

has a double keratoid cusp at the origin.

17. Show that the curve y
3= Sxry 4- xty - 2.r

4

has a conjugate point at the origin.

298. Singularities of Transcendental Curves.

In addition to the singularities above discussed others occur

occasionally in transcendental curves, due to discontinuities iu

the values of y , etc. For instance, if the value of y be

discontinuous at a certain point the curve suddenly stops there

and the point is called a “point d!arret ” or “ stop point”

Consider the curve y = ax ;
(a > 1).

When a;=*~oo, y=l, and as x increases from -ao to zero y is always

positive and decreases down to zero. As soon, however, as x becomes

positive, being still indefinitely small, y suddenly becomes infinitely great,

and as x increases to + oo y gradually diminishes down to unity. The
origin is a point darret on this curve, and the shape is that shown in the

annexed figure.

jNext suppose that the value of y is continuous, but that at

a certain point^ becomes discontinuous, so jihat two branches

of the curve meet at a certain angle at the same point and stop

there. Such a point is called a “poi/nt saillant”
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299. Branch of Conjugate Points.

It sometimes happens that a curve possesses an infinite series

of conjugate points, satisfying the equation to the curve and
forming a branch of isolated points. M. Vincent, in a memoir
published in vol. xv. of Gergonne’s “ Annales des Math.,” has

discussed several such cases, and calls such discontinuous

branches by the name branches pointilldes.

Ex. In tracing the curve y — .r*, it is clear that, when .r=soo, y=soo;

and when 1, y— 1. Also that as x decreases from oo to 1, y also

decreases from oo to 1. Between x=l and x—0 y is less than 1; and
when x=O

f y— 1 (see Chap. XIV.). There is therefore a continuous

branch of the curve, viz., oo PB, above the axis of x.

Again, whenever x is a fraction with an even denominator there are

Fig. 52.

two real values of y, differing only in sign
; <?.//.,

whilst, whenever the denominator of x is odd, there is but one real value

for y. There is therefore a set of • v,ijugate points below the axis

forming a discontinuous branch, of ih.* same shape as the continuous

branch above the axis.

Next consider what happens when x is negative. Let the co-ordinates

of any point P on the branch in the first quadrant be (x, y), then Olf—x.

Take On= —x along the negative portion of the axis of x, then, ifp bejbhe

corresponding point on the curve, we have

pn --(-#) PN— x*,

and therefore pn . PV=( - 1)*,
*

which may be =1, -
1, or imaginary, according to the particular value of
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2c. Hence, when the ordinate pn is real, its magnitude is inverse to that

of the corresponding ordinate PN. Hence on this curve we have two

infinite series of conjugate points, as shown in the figure.

For an account of M. Vincent’s memoir and criticisms upon it see

Dr. Salmon’s “ Higher Plane Curves,” 2nd ed., p. 275, Or a paper by

Mr. D. F. Gregory, “Camb. Math. Journal,” vol. i., pp. 231, 264.

300. Maclaurin’s Theorem with regard to Cubics.

If a radius vector OPQ be drawn through a point of in-

flexion (0) of a cubic
,
cutting the curve again in P and Q, to

show that the locus of the extremities of the harmonic means

between OP and OQ,
is a straight line .

If the origin he taken at the point of inflexion and the tan-

gent at the point of inflexion as the axis of y}
the equation of

the cubic must assume thb form

if+xu— ti «. (1)
«

where u is the most general expression of the second and lower

degrees, viz., ax 2
-f 2hxy -f h

y

2+ 2gx+ 2fy+ c,

for it is clear that the axis of y cuts this curve in three points

ultimately coincident with the origin.

The equation (1) when put into polars takes the form

Lr*+Mr+N=0,

where //= sin30-f (a cos26+2h sin 0 cos 6+b sin20) cos 0,

M=(2g cos 0+2/sin 0)cos 0, 9

iV= c cos 0.

If rv r
2
be the roots of this quadratic, and p the harmonic

mean between them, we have

2 1 1_ 2y cos 0+2fsin 0

p-*i
+r- r1

’

which shows that the Cartesian Equation of the locus of the

extremity of the harmonic mean is the straight line

ga+fn+c=o.

j ,301. It is obvious from Art. 211 that the equation of the

polar conic of the cubic (1) with regard to the origin is

x(2gx+2fy)+ 2cx= 0,

\_or
f ,

,v x(gx+fy+ c)=Q.
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Hence the polar conic of a point of inflexion on a cubic breaks

up into two straight lines, one of which is the tangent at the

point of inflexion, and the other the locus of the extremities of

the -harmonic means of the radii vcctores through the point of

inflexion. It appears from this that only three tangents can

be drawn from a point of inflexion on a cubic to the curve,

viz., one to each of the points in which the line ff%+fy+c=

0

meets the curve, and consequently also that their three points

of contact lie in a straight line.

302. If a Cubic have three real points of Inflexion they are

Collinear.

It follows immediately from Msfclaurin’s Theorem above

proved that if A anc} B be two points of inflexion on a cubic,

the line AB produced will cut the curve in a third point C,

which is also a point of inflexion on the cubic. For if B/Bv B2

be the three ultimately coincident points on the cubic, which

lie in a straight line (

B

being a point of inflexion), let AB,

ABV AB2
cut the curve in Gf Cv C„ and let All

,
AHV AH2

be

the harmonic means between AB
t
AC; ABV ACX ;

AB2t AC.,

respectively, then 1/,Hv II
2
lie in a straight line by Maclaurins

Theorem, and B, Bv B2
lie in a straight line; therefore by a

theorem in conic sections C
,
Gv C2

also lie in a straight line,

and they are -ultimately coincident points. C is therefore a

point of inflexion.

303. Number of points necessary to define a Curve of the

nth Degree.

The number of terms in the general equation of the nth degree

is

It therefore contains '— I or — indepen-

1+ 2+ 3+...+(»+ i )

=

(n+l)(n+2)
' *#

dent constants.
w

Hence in general a curve-of the 71
th degreo may be drawn to

pass through arbitrarily chosen points.
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304. Maximum Number of Double Points on a Curve of the

71
th

Degree.

There cannot be more than i(n— l)(n— 2) double points on

an n-tic curve.

For if there could be —— —--+1 double points, a curve

of degree n— 2 could be drawn to pass through them and

through any n— 3 other arbitrary points on the curve, for

(n-lXn-2)
f 1

, n 3
Jn-2)(n+l)

and therefore these would make just sufficient points to com-

pletely define the new curve. But the number of intersections

would be s|—— +
1| +

(^— 3),

or n(n— 2)+l,

which is one more than possible for curves of degrees n and

71—2. *

Examples.

1. Show that a cubic curve cannot have more than one double point,

and cannot have a triple point.

Examine the case of the curve

2(.*3+,f) _ 3(3^+tf) + 12*= 4,

and show that there arc apparently two nodes at (1, 1) and at (2, 0)

respectively. Explain this result.

2. Show that a quartic cannot have more than three double points, and

cannot have a double point and a triple point.

3. The curve whose equation is

*4+ 1/
4— 2a\a?+y~) - a4

has four double points. Find them
;
account for this, and trace the curve.

[Cbameb.]

4. All curves of the third degree which pass through eight given points

also pass through a ninth common point.

5. All the double points of a family of cubics determined by seven given

points lie on a sextic.

305. Use of Homogeneous Co-ordinates.

Let f(x, y> z)= 0 be the equation of any curve , of the 71
th

degree, which may be considered expressed either in trilinears,

areals or Cartesians made homogeneous by the introduction of

a proper power of z(= 1) where requisite.
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Let (xv yv Zj) be the coordinates of any fixed point A, and let

(X, Y, Z) be the current co-ordinates of any point P on the

secant AP. Let AP cut the curve in the points Qv Q2, ....

Let .any of the points Q(x, y t z) divide AP in the ratio X
: fx

where \+/i= l.

Then x=XX fxxv

y=\Y+fiyv
z= XZ+ jxzv

Hence f(XX+fxxv XY+/j.yv XZ+jxz^^O.

This may be expanded in two ways by Taylor's Theorem;

and to abbreviate the algebra let f(X, Y, Z) be written/ and

f(xv yv z
Y)
be written fv also denote the operations

by Vr and V{ respectively.

Then we have

x»/+^yf +...+^>V/ +...+2 r»/

or

..nf ./*
n ~ aXy

f |

M" ‘Kjyw , . P .V n ~ rf 4- 4---V nfM/i+-yr K^i+ 2!
Vl^1+ "‘+

(n-r)\ 1 •' ,+ '“+
n! 1

=0 (2)

Either of these equations gives the n values of the ratio

. Tiz
?e.

V ftA’
Comparing the coefficients we have the series of identities

i“" 2X2

7l!

=0 ( 1 )

X”,

<nV'
*'•*
etc.,

^ TT2/? — V ITn-2/

2!
Kl/l “(^-2)!

K
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306. Polar Curves.

The several loci defined by the equations

n/x=0,
*7/x=o,

^x
8
/x= 0,

etc.,

are respectively called the polar line, the polar conic, the polar

cubic{ and so on.

The curve F
1
n " 1
/1 = 0, or, which is the same thing, 7/=0,

has been called (Art. 211) the first polar of the point xv yv zv
Similarly the curves 72/= 0, 73/=0, etc., are called the second,

third, etc., polar curves. It is clear then that

the n— 1th pol^ir curve is the polar line,

the n— 2th polar curve is the polar conic;

and so on.

307. Geometrical Interpretations.

The geometrical meanings of these equations will be

obvious :

—

If 7^= 0, the sum of the roots of Equation (2) vanishes, i.e.

giving

or
B-f+r+r+.-'+s:

This property is due to Cotes, and the special case of it when

the curve is a conic gives rise to the name polar line.

If Pift-O, we have
• J|=0.

which may be interpreted as before, and similarly for the

higher polar curves.

It appears that since each of these curves is completely

defined by its geometrical property it is totally independent

of any system of co-ordinates used in its description.
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308. Polar Curves of the Origin.

Taking Cartesians, if the origin be chosen at the point A,
aj

1= yi= 0, and it appears that the polar line, polar conic, polar

cubic, etc., of the origin respectively reduce to

3"~ 2/- 0 ^= 0 etc
3s"- 1 ’ 32"- 2 ’ 32" -3

U’ etc-

If the Cartesian equation be written

%+ Ui+ u2+ u3+ . .
. +

u

n = 0 *

this becomes when the z is introduced

u0z
n+

u

x
zn ~ 1+ u2

zn - 2+u3
zn ~3+ . . . +un == 0,

and the equations of the several polars of the origin are

n\ / IN, ^
'

j- uo
0 + (7?-1)!u

1
= O, - ,

nl

2j
+ (w- 1)!V+ (w- 2)! u2= 9,

w!
"3!

(n l ) !
~.

iiZ
2+0^„p} u2z+(n_ 3)| U2= (),^3+ v

2!

etc.,

i.c. ?m0+ux
= O,

+ (w- 1)^+w2= 0,

n(n— l)(w— 2) (w— l)(w— 2) , ox , nX+ i2
'—-^i+(^- 2)^2+^3= °»

1.2.3

etc.

309. General Conclusions.

If the point A which has been taken for origin lie on the

3urve, then tt
0= 0, and the polar curves all have u

x = 0 for

bangent at the origin.

If also the first degree terms ar^ absent from the equation of

the curve, they are absent too from all the polars, and the terms

of lowest degree throughout the whole system are u
2

. We
therefore draw the following conclusions :

—

(a.) The polar curves at any point, on the original curve all

touch it at the point in question. •

(6.) The polar curves at any multiple point all have a mul-

tiple point of the same order, with the same tangents

as the multiple point on the original curve,

oE.D.C.
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(c.) The polar conic at a double point on a curve breaks
;

up
into two straight lines, viz., the tangents at the

multiple point.

(d.) The polar conic at a cusp breaks up into two straight

lines coincident with the tangent at the cusp.

(e.) The polar conic at a point of inflexion breaks up into

two straight lines, one of which is the tangent at the

inflexional point and the other does not in general

pass through that point.

[For in this case u
2
must contain u

x
for a factor,

= u
1
y1 say, so the polar conic becomes

+ !)==(>

;

the line v
x
+n— 1 =0 is called the Harmonic Polar of

the point of Inflexion (see Art. 301).]

310. First Polar. Casps of Node or Cus|.

ft If a curve have a node at any"pointTet the origin be taken

1 there and the tangents at the node for axes.

The curve then takes the form

u&xyzn - 2+ ufi
n ~ 3+ u±zn

~ 4+ . . . = 0

.

The first polar of xv yv zv viz.

becomes

dn
,

c)w
,

dw ^X^Hy +Z
^z

= °

%i(yz
n ~ 2+ . . .)

+

yx
(xzn ~- o,

the lowest degree terms only being retained. And since these

terms are linear it appears that the first polar of any point xv

yv z
x
goes through the origin and therefore through all the

other double points on the curve.

If the curve have a cusp and the origin be taken there wjfcji

the" q-axis the equation of the curve

takes the form

I
u = y

2zn
” 2+uzz

n ~ 3
-fuAz

n ” 4+ ... = 0,

and the first polar of any point xv yv z
x
is

2/1(2^n- 2+. = 0

the term of lowest degree only being retained.

Hence this curve also touches the cc-axis at the origin.

Thus the first polar,of any point goes through all the cusps

and touched the curve at each.
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311.

The Hessian.

We have seen that at all double points aud points of inflex~

ion the polar conic degenerates into two straight lines. Hence
its discriminant vanishes. Also, conversely. Now the equation

of the polar conic of the curve u =f(xv yv 0
1
)=O corresponding

to the point xv yv z
1
is V*fx = 0,

- +2YZA+- = 0-

ar,' ay,os
l

Hence if xv yv 2
,
be a double point or a point of inflexion,

we have
dl*

yf~'
"dxfiy;

*vr
02,U.l\

_ay ay &/V ay,oc
t

a

y

ay ay
dz,dx,’ S~ 8

1

that is, the curve

H(u)~
|

uxx , &xy>

\

Vyx, Uyyy 'U'yz

'U'zt/ » U'zz

cuts the original curve u= 0 in all its multiple points and

points of inflexion.

The determinant H(u) is called the Hessian of u from

M. Otto Hesse, the discoverer of the relation between the

curves u= 0
,

II(u)= 0.

312.

Number of the Points of Inflexion.

The degree nf this curv
f
»w^

r]y 3 Hence it cannot

have more than 3n(n— 2) inters ctions with the original curve.

Thus in a curve with no multiple points upon it there will

be 3n(n— 2) points of inflexion real or imaginary.

313.

Cases of Node and Cusp.

If the curve has a node let the origin be taken there, and

the tangents to the node for axes.

The equation to the curve now becomes

u=xyzn - 2+u
sz
n ' z+u

4
4n‘*+ ... *= 0.
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;
uyz=(n-2)xzn

~ 3 +...;

; Uzx= (n-2)yzn -*+ ...;

uzz = (n-~2)(n-3)xyzn -4+ ;
uxy=zn ~ 2 +...

;

the lowest degree terms only in x and y being retained in each

case.

Hence in

H{ll) ^ UXX . Uyy . VjZ2+ 2'lLyZ . Ugx . V/Xy“UXX • ^ tfZ
Vfyy . UZX ^ZZ .tff

= 0
,

the lowest degree terms are of the form Axy. Hence the

Hessian has a node also at the origin and the tangents to the

node of the Hessian coincide with the tangents to the node on

the original curve.
t

It is easy to prove further that when the curve has a mul-

tiple point. of order h the Hessian has a multiple point of

order 3/c— 4 at the same point and that each of the tangents at

the multiple point is a tangent to one or other of the 37c— 4

branches of the Hessian. (See Dr. Salmon’s Higher Plane

Curves, 2nd cd., page 58.)

We next consider the case of a cusp. Let the origin be

taken at the cusp and the tangent for the sc-axis. Then the

equation to the curve becomes

u = y2z11 ~ 2+usz
n ~ 3+ u4

zn “ 4+ . . . =0.

Here

u**= dx^
n '3+ ‘" ; uvz= 2(n-'2)y

2>n ~ s+—
7\qi

uuy= 2zn
- 2+... ; ulx= (n-'S)^ *. 2n-*+...

:

?fiu
ua =(n-2)(n-3)y2zn

- i +... ; uxy= d̂
^zn ~ 3+ ... :

the lowest degree terms only in x and y being retained.

. Hence in H(u)= 0 the lowest degree terms in x and y are of

the form A . ^~ 3
. y\

So the Hessian has a triple point with two coincident tan-

u *

gents y*= 0 and a third tangent -^?=0.

Hence

UXX—
dofl

*n -

3

+ ...

3%. _ „ ,uvy=w z +-
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314. Plucker’s Equations.

We are now in a position to establish Plucker’s Equations for

the number of tangents which can be drawn from a given

point to a curve of the wth degree and for the number of points

of inflexion upon it.

It was established in Art. 208 that the first polar cuts the

curve in n(n— 1 ) points. The first polar however goes through

all the double points and in the case of a cusp touches, t'le

curve there. Hence a node counts as two and a qusp as three

points of intersection. Tliusi? there be 6 nodes and k cusps

the classToT the curve, viz. n(n— 1), is diminished by 2<S+3/c.

Hence ifm be the class

m= n(n — 1
)
— 2<S*- 3k (

1)

Again, let i be thejiumberof inflexions on the curve. Then

it has been established that if there are no multiple points

t =z3n(n— 2).

But it has been shown that the Hessian passes also through

all the double points and has tangents coincident with those

of the curve. Hence each node counts for six intersections of

the Hessian with the curve. And since at each cusp on the

curve the Hessian has a triple point, two tangents being the

coincident tangents to the curve at the cusp, each cusp counts

for 8 intersections (3+ 3+ 2). Thus the number of inflexions

is diminished by 6<$+ 8/c and stands as

i = Sn(n— 2)— 6<S— 8* (2)

By considering the reciprocal curve for which

a stationary point gives rise to a stationary tangent,

a double point gives fise to a double tangent,

a stationary tangent gives i se to a stationary point,

it follows that if r be the number of double or bi-tangents,

i.e. tangents having contact at more than one point of their

length, and m the degree of the reciprocal curve, i.e. the cla9&

of the original curve •

= 1) — 2t— 3*, (3)

k= 3ra(m— 2) — 6r.~ Si (4)

These four equations are due to Pliicker.
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315. Deficiency.

The number £(?i— l)(w— 2) —S— k, by which the number of

double points falls short of the maximum possible is called the

deficiency of the curve.
i

EXAMrLJ'.S.

1. Prove that the four equations established in Art. 314 are not inde-

pendent.

2. Show that the geometrical property of the polar conic may be

expressed as -0.
n(n -1) 1 n — 1 v 1 v 1

2 ff p
^

VlTn

3. If A be a point of inflexion on a curve and A, I\ P2> •••> P«-i be a

secant cutting the Harmonic polar of the point of inflexion in Q, prove

that w=A +i2

+- +^„.;
4. Form the Hessian of ^3+^3=3owy, and find the number of points of

inflexion. [Oxford, 1885.]

5.

Establish the equations

2t=n(n - 2)(rc
a - 9) - 2(na - n - fi)(25+ 3k) + 4<8(8 - 1) + 125k + 9k(k - 1),

25

=

m(?n - 2/7»
2 - 9)- 2(m* - m - 6)(2r+ 3i)+ 4t(t - 1) + 1 2ti + 9l(l - 1 ).

[Pluckkr.]

G. Trove that the deficiency of a curve is the same as that of its

reciprocal.

316. Unicursal Curves.

When a curve has its full number of double points, so that

its deficiency is zero, the current co-ordinates can each be

expressed as rational algebraic functions of some single para-

meter. *

For supposing that there are — --- double points,

;

curve of the (n— 2)
th degree may be piade to pass through them

and through n— 3 other points on the curve. Then since

(»- 1Xn- *)+n- 3=(n- 2)(n+l

)

_ ^
2 2

the points now chosen are insufficient by one to completely

determine the new curve. Its equation will therefore contain

one arbitrary constant and may therefore be written

u+Av= 0,

*»
*

y .1
with an undetermined parameter
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Eliminating y between this equation and that of the given

curve, we have remaining an equation between x and X of

degree n(n— 2) determining the abscissae of the points of

a intersection. Of the n(n— 2) roots all but one are known,

being the abscissae of the £(?i— — 2) double points each

counted twice and the abscissae of the chosen n— 3 points

for n(n— 2)— 12——- ——+n— 3
j
= 1

.

If then the corresponding factors be divided out we arc left

with x, the .abscissa of any other point on the original curve,

expressed as a rational integral function of X. In the same

way y may be similarly expressed.

317. Though it is impossible to fcompress into the limits of

the present volume a complete account of the singularities of

curves, it is hoped that the later articles of this chapter will

form a fair introduction to a study of their general properties

in Dr. Salmons Treatise, to which the student is referred for

more detailed information and to which also the Author desires

to acknowledge his indebtedness.

EXAMPLES.

1. Write down the equations of the tangents at the origin for each

of the following curves :

—

(a) y + c = c cosh

'

c

(P) y = a tan -

(y) y
i—x log(l + *).

(
8
)
x6 + yz ~ 3axy.

2. Show that on the curve

(ay - — bo&

there is a cusp of the first species at the origin, and a point of

inflexion whose abscissa is ^6.

3. Show that the Trident curve *
,

axy + a8 = re
3

ha8*a point of inflexion at the point in which it cuts the axis of x,

and show that the tangent at the point of inflexion makes with the

axis of sc an angle tan~13.
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4. Show that the curve b(ay - re
2
)
2 =

has a cusp of the second species at the origin.

5. Show that, if n be greater than 2, the curve

b
n~\ay - x2

)
2 = xn

has a cusp at the origin of the first or second species according as n
is less or greater than 4.

6. Find the two points of inflexion of the curve

y _ x 2 fx - a\i

c 9a2 ~
\ a )

and draw figures showing the characters of the inflexions.

7. Show that the points of inflexion on the cubic

a2x

are given by x = 0 and x = ± aj3.

Show that these three points of inflexion li$ on the straight line

•* x — \y.

8. Show that the curve au = 0n has a point of inflexion where

an — {n(l - n)} 2
.

9. Find by polars the points of inflexion on the curve

2x(x2 4- y
2
)
— a(2x2 + y

2
).

10. Show that the origin is a triple point on the curve

x4 -hyi ==axy2
,

and that there is a cusp of the first species there.

11. Show that the abscissae of the points of inflexion on the curve

y
n
=/(%)

are roots of the equation

{/'(*) }
2
=A*)/"(4

1 2. Show that the abscissae of the points of inflexion on the curve

y = e~
Xx

tan yx

are given by 2/a sec tan fix - A.) + A2tan fix= 0.

13. Show that the curve y =—

t

xL - a1

has a point of inflexion at the point whose abscissa is

- a 4/3+1
4/3 -i’

] 4. Show that there are two points of inflexion on the cubic

x3 + y
A — a3

at the points (a, 0), (0, a) respectively.
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In the curve a? +y3 « ckb2 .

show that there is a cusp of the first kind at the origin, and a point

of inflexion where x= a.

16.

In the curve y
2 = (x - a)(x - 6)(ce - c)

show that if a = b there is a node, cusp, or conjugate point at x= a

according as a is >, or <c. Also show that the points of

4c-a
3 '

>, =, or <c.

inflexion have for their abscissae x=-- Hence show that the

points of inflexion on this curve are real or imaginary according as

the curve has a conjugate point or a node.

1 7. Show that for the curve

r~a( 1 - cos 6)

there is a cusp of the first kind at the origin.

18. Show that the curve

"
7
,2cos20 = a2cos 20

has a double point at the origin.

1 9. Show that the curve r = a sin n

0

has a multiple point at the origin of order n or 2n according as n is

odd or even.

at

p

20. Show that the curve = -
*

1 + O1

has a cusp of the first kind at the pole.

21. Show that if the cubic

xy1 + ay = ax6 + bx2 + cx -f d

have a centre, then will = 0 and d - 0 and the centre is at the origin.

In this case show also that the origin is a point of inflexion on the

curve.

22. Show that there is a conjugate point on the locus

ar* + y
3 + 3nxy — c3

at the point ( - c, - c). Trace the curve.

23. Show that the curve x5 + y
6 * 5ax2

y
2

has two cusps of the first species at the origin, and that a?+ y = a is

an asymptote.

24. Show that the curve by2 = a^sin2^
a .

has a cusp of the first species at the origin and is symmetrical with

regard to the axis of x. Show also that it has an infinite series of

conjugate points lying at equal distances frdm each other along the

negative portion of the axis of x.
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r. *

25. Show that the curve y - x =

has a node at the point (1, 2).

26. Show that the curve

(x2 + y
2
)
2 = a(3x?y-y2

)

has a triplo point at the origin, and that the angles between the

branches through the origin are equal.

27. Show that the curve

(x2 + y
2Y — 4axy(x2 - y

2
)

has a multiple point of the eighth order at the origin, and that the

curve consists of eight equal loops.

28. Show that for the Conchoid

x2y*=(a+y)2(b2 -y2
),

if b be >a there is a node at x = 0, y - -a, and if b - a there is a

cusp at the same point *

29/ The curve whose tangent is of an invariable magnitude is

always convex towards the foot of the ordinate.

30. Examine the nature of the origin on the curve

y
b
i- ax4 - I)

2xy2 ~ 0.

31. Examine the nature of the origin on the curve

sc
4 - ayx2 + by2 = 0.

32. Examine for multiple points the curvo

x4 - 2ay:i - 3a2y
2 - 2a2x2 4- a4 = 0.

33. Examine the singularities of the curve

x4 - 4a,r3 - 2ay2 + + 3a2y
2— a4 - 0.

There are nodes at the points (0, cr.), (a, 0), (2a, a). Find the direc-

tions of the tangents at these points.

34. Show that the curve

• a4 - 2x2y - xy2 - 2a2 - 2xy+y2 - a? + 2y + l= 0

has a single cusp of the second kind at the point (0, - 1).

35. Search for double points on the curve

y
4 - 8y

:i - 1 2xy\+ 16y
2 + 48xy + 4b2 - 64a; ~ 0. [Rolle.]

* 36. Show that there are two double points in all respects similar

on the curve x4 - '2ax? J2 + 2a2
cc
2 - ay3 - a2

y
2 = 0, *

and that there is an inflexion at each double point.

[Cramer, Lignes Courbet.]

[Cramer.]

[Rolle.]

[Peacock.]
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37. Determine the double points, distinguishing their species, on

the sextic (:*
2 - 2y2

)
2
{2( ic2 + 2y2

)
- 3} = {3(a?2 + 2y2

)
- 4} 2

.

[Oxford, 1886.]

38. Determine the double points on

(** “ y/
2
)(® - 1)(2» - 3) + 4(a;2 + ?/

2 - 2a?)2 = 0. [Plucker.]

39. The points o£ contact of parallel tangents to a curve of the

71
th degree lie on a curve of the (n - 1 )

th degree. [Serret.]

40. If A be any point on a curve, and A

P

1
P2 ... be a secant

cutting the curve in Pl9
P2,

... Pn and the polar conic of A in Q,

n — 1 1 1 1
provo . -

Aq ^ A^+ A p2

+ — +
AJi

n
_-

41. A nodal c^bic intersects in the points P and 1* two lines which

are harmonically conjugate with respect to the tangents at the node.

Prove that the tangents at P
,
P* meet on the curve.

42 Prove"that the "locus of the cusp of a cubic with three given

asymptotes is the maximum ellipse inscribed in the triangle formed

by the asymptotes. [Plucker.]

43.

If (a?, ?/, z) be a double point on a curve n -
0, and if

1/JC+ mY + viZ ~ 0

be a tangent at the double point, then will

x y ,
z A

l m n

and Pxuyi + rri^u^ + nzzu
X!/
~ 0. [Oxford, 1886.]

44. If the equation to a plane curve be <£ = 0, where <f>
is a function

of x and y which fulfils the condition - 0, prove that if n
ox1 Oy-

branches of the curve meet in a multiple point their tangents will'

form 2n angles with each other, each equal to -•
,° ^ n [Smith's Prize, 1877.]

45. Prove that the Hessian of the cubic

x? + y6 + & fimxyz - 0

. o q , q 1 "f* 2wi>3 «
is a?

3 + 2r +-28 o

—

XVZ = 0,
m?

and show that the curve and its Hessian have the same points of

inflexion. * [Salmon, //. P./7.]



CHAPTER X.

CURVATURE.

318. Angle of Contingence.

Let PQ be an arc of a curve. Suppose that between P and

Q there is no point of inflexion or other singularity, but that

the bending is cuntinirously in one direction. Let LPR and

MQ be the tangents at P and Q, intersecting at T and cutting

a given fixed straight line LZ in L and M. Then the angle

RTQ is called the angle of contingence of the arc PQ.

The angle of contingence of any arc is therefore the difference

of the angles which the tangents at its extremities make with

any given fixed straight line. It is also obviously the angle

turned through by a line which rolls along the curve from one

extremity of the arc to the other.
t

319. Measure of Curvature.

It is clear that the tuhole bending or curvature which the

curve undergoes between P and Q is greater or less according

as the angle of contingence RTQ is greater or less. The
.$> 252
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fraction is called the average bending or

average curvature of the arc. We shall define the curvature

of a curve in the immediate neighbourhood of a given point to

be the rate of deflection from the tangent at that point. And
we shall take as a measure of this rate of deflection at the

given point the limit of the expression

when the length of the arc measured from the given point

and therefore also the angle of contingence are indefinitely

diminished. •

320. Curvature of a Circle.

Tn the case of the circle the curvature is the same at every

point and is measured by the reciprocal of the radius.

For let r be the radius, 0 the centre. Then

RTQ=POQ=

the angle being supposed measured in circular measure. Hence

angle of contingence _ 3

length of arc r

and this is true whether the limit be taken or not. Hence the

“ curvature ” of a circle at any poi it is measured by the recipro-

cal of the radius.

321. Circle of Curvature.

If three contiguous points P, Q, R be taken on a curve, a

circle may be drawn to pass through them. When the points

are indefinitely close together, PQ and QR are ultimately

tangents both to the curve and to the circle. Hence at the

point of ultimate coincidence the curve and the circle have the
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same angle of contingence
,
viz., the angle RQZ (see Fig. 55).

Moreover, the arcs PR of the circle and the curve differ by a

small quantity of order higher than their own, and therefore

may be considered equal in the limit (see Art. 34). Hence
the curvatures of this circle and of the curve at the point of

contact are equal. It is therefore convenient to describe the

curvature of a curve at a given point by reference to a circle

thus drawn, the reciprocal of the radius being a correct measure

of the rate of bend. We shall therefore consider such a circle

to exist for each point of a curve and shall speak of it as the

circle of curvature of that point. Its radius and centre will be

called the radius and centre of curvature respectively, and a

chord of this circle drawn through the point of contact in any

direction will be referred to as the chord of curvature in that

direction.

322. Formula for Radius of Curvature.

Referring to the figure of Art. 318, let the arc AP measured

from some fixed point A on the curve up to P be called s, and

AQt let the angle PLZ=\/r, and QMZ=^r+.Syjr. Then

the angle of contingence RTQ= S\fr and the measure of the

curvature=Lt^ . If therefore the radius of curvature
Ss ds

be called p, we have or (a)

323. This formula may also be arrived at thus. Let PQ and

QR (Fig. 55) be considered equal chords, and therefore when
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we proceed to the limit the elementary arcs PQ and QR may
be considered equal. Call each <5s, and the angle RQZ=

8\f/.

Now the radius of the circum-circle of the triangle PQR is

PR
2 sinPQR

Hence p=

=

Lt--, =Lt~- • ,^7 =
*

•r 2 sin PQR 2 sin S\fr S\fr sin S\fr d\/r

Also, it is clear that the lines which bisect at right angles the

chords PQ
t QR intersect at the circum-centre ofPQR, i.c., in the

limit the centre of curvature of any point on a curve may be con-

sidered as th$ point of intersection of the normal at that poimt

with the normal at a contiguous and ultimately coincidentpoi/nt.

324. The formula (a) is useful in the casein which the equation of the

curve is given in its intrinsic form, i.e. when the equation is given as a

relation between s and \V (Art. 310). For example, that relation for a

catenary is s=c tan i/r, whence

p=d^
=cm*+>

and the rate of its deflection at any point is measured by

1 008® C

p c S'+ tr

325. Transformations.

This formula however must be transformed so as to suit eacli

of the systems of co-ordinates in which it is usual to express

the equation of a curve. These transformations we proceed to

perform.

We have the equations

t
dx . . dy

C0S*= ds>
sm^= ds

Hence, differentiating each of these with respect to 8,

whence

Ill
. d\Is d?y

d*x Py
ds1 ds2

(B)
dy dx
ds ds

y

/PxV
v<&)

j_(d2
y\

2

+w/ (c)

These formulae (b) and (c) are only suitable for the case in

which both x and y are known functions of 8.
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326. Cartesian Formnla. Explicit Functions.

Again, since • tan \fs
=

we have sec2\//^-

=

by differentiating with regard to x.

Now . * = 1
;

Cite cZs rfcc pCO&\fs

therefore

and

therefore

sec8t/r

.

1 _d2
y

p
~~ dx2

'

sec2\/r = 1 + tan2\fr= 1 +

{>+©?
\dxJ ’

P =

cfc
2

.(D)

This important form of the result is adapted to the evalua-

tion of the radius of curvature when the equation of the curve

is given in Cartesian co-ordinates, y being an explicit function

of a?.

327. Cartesians. Implicit Functions.

We may throw this into another shape specially adapted to

Cartesian curves, in which neither variable can be expressed

explicitly as a function of the other.

Thus if </)(

x

} y)= 0 be the equation to the curve, we have

and differentiating again

<).e dy

/D^.,, 00, dy\dy
Ydx + dy ' dx)dx+^vdxi ’

or </>x^l+<t>v«(^)+^ = 0.

Hence substituting for^ and in the formula
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we have
(*+# fa

or (E)_ (&4>S)j

<t>xx<t>y
~~
^^xyfafa+ fayfa

328. A curve is frequently defined by giving the two Car-

tesian co-ordinates x, y in terms of a third variable, e.y.
t the

equation of a cycloid is most conveniently expressed as

#
a?= a(0+sin0), y=a(1— cosfl).

Formula (n) is very easily modified to meet the requirements

of this case.

Let x= F(t)\ be the equations of the

y—f{t) J curve.

dy

dy dt _ f(t)

dx ~~ dx~~ F\t)'

dt

d?y _ d fdy\ dt

dx2 dt \dx) dx

* dl
y dx^drx dy

dt? dt di2 dt
~~

/dxX6

\dt)

~
' im

i

s

and formula (d) becomes *

KS) + tit) }*
{[F\tw+[.nm[

()P ~d*y dxjVx dy~f"(t) . F(t)-f(i) . F\t) W
dt2 dt dt2 dt

Ex. In the above-mentioned case of i/te cycloid

Then

and

g=a(l+cos0),

S=asin0’

%—* ain0’

S-—

*

and by formula (p)

8a cos3

P=
a{(l +cos ff*

s+sin8fl}fr_
cos0(i+cosT)+8iu*0

2 cos3^

e
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329. Curvature at the Origin.

When the curve passes through the origin the values of

an(l = q) at the origin may be deduced by substi-

Qf/jj

2

tuting for y the expression px ... (the expansion of y by

Maclaurin’s Theorem) and equating coefficients of like powers

of x in the identity obtained. The radius of curvature at

the origin may then be at once deduced from the formula

p= ± [Formula (d)].

Ex. Let the curve be

Putting

we haVe

ax+by

+ (t
' jc

2+ 2Kxy+ Vy2

+ = 0.

y-=p.r+%3?+...

+ bp
,

a
|

x+
+ 2h'p

+ b'p2

' • • • =0,

u+ bp— 0,

a + 2h'p+ tip* -f^= 0,

etc.

p--* and ?=-2*'-+-Mpjjy

„=±(L+f:

>

)!= 1
. (_“

2+ 62
)
3

therefore

and

giving

whence — ....

—

r
(/ % a b2 — 2/iab+b a2

This result of course might be deduced at once from formula (b).

330. It will be noticed that, if the lowest terms of the

equation be of the second degree, we should get a quadratic

equation giving two values for p, and consequently also two

values for q. These indicate the two values of p corresponding

to the two branches of the curve passing through the origin.

Ex. Find the radii of curvature at the origin for the curve

y
2 - &vy+ 2x2 — x3+y*= 0.

Substitutingpx+ 1- ... for y we have
2!

p>

-3P
+2

pq

-1

**+... =0>
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whence

whence

and

and therefore

or

^8 -3p+2=0,
pq- :k- 1=0,

etc.,

jt>=l or 2,

q— - 2 or 2,

j==0+^_2i __,.4 l4
q -2

The difference of sign introduced by the q indicates that tlie two branches

passing through the origin bend in opposite directions.

B

331. Newtonian Method.

The Newtonian Method of finding the curvature of the curve

at the origin is instructive and interesting. Suppose the axes

taken so that the axis of a; is a tangent to the curve at the

point A, and the axis of y,
viz., AB

f
is therefore the normal.

Let APB be the circle of curvature, P the point adjacent to

and ultimately coincident with A in which the curve and the

circle intersect. Then

or

PN*= AN. NB,

pmNB=
AN'

Now in the limit

NB=AB= twice the radius of curvature.

1 PN2
• x2

Hence P=Lti~AN
=L% W

Similarly, if the axis of y be the tangent at the origin, we



CHAPTER X.

Ex. Find the radius of curvature at the origin for the curve

2x* + 3y*+ ±&y+xy - y
2+ 2#=0.

In this case the axis of y is a tangent at the origin, and therefore we shall

endeavour to find l.t? .

2x

Dividing by x 2ofi 4* 3y
2

. ^ +
4xy+y + 2=0.

Now, at the origin lJ*~= 2p, .r=0, y=0, and the equation becomes

-2/o + 2=0, or />=].

332. The same method may be applied when the tangent to

the curve at the origin does not coincide with one of the axes

;

but as the method of Art. 329 is very simple we leave the

investigation as an exercise to the student.

Ex. Establish in the above manner the result of the Example in Ai t. 320.

Examples.

1 . Apply formula (a) to the curves

8=ay\r, 4=0 sin \jry s-a sec:

*^, Vr= gd \

2. Apply formula (i>) to the curves

y
2=

4

ax\ y = c cosh
x

.

3. Apply formula (e) to the curve

ax+ by+ a!or+ 2h'xy+b'y1+ .

.

. =0

to find the radius of curvature at the origin.

4. Apply formula (r) to the ellipse

x~a cos 6 \

y— b sin 6)

6.

Prove that in the case of the equiangular spiral whose intrinsic

equation is 8~a(em^- 1),

p—maemV'.

6. For the tractrix $—c log sec yjr prove that p=c tan yjr.

7. Show that in the curve y —

x

+ 3x2 - ac3

the radius of curvature at the origin =*4714..., and that at the point

(1, 3) it is infinite.

8. Show that in the curve

y
2 - 3xy - 4x2 + x3+ x*y +?/'= 0

the radii of curvature at the origin are

85
tjll and 5*/2.

&
9. Show that the radii of curvature of the curve

for the origin

and for the point (
- a, 0)

J a — x
« ±OaA
s
_a
4*
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y=a log sec
x
(l

10. Show that the radii of curvature at the origin for the curve

.r
3 +^3= 3cwy

are each

11. Prove that the chord of curvature parallel to the axis of y for th«*

curve

is of constant length.

1 2. Prove that for the curve s—?n(sec?ylr - 1 ),

p — 3m tan i/r sec3\fr,

and hence that 3
^

•{
—

1

.

# cLr dor

Also, that this differential equation is satisfied by the semicubioal parabola

27my*—8x\
13. Prove that for the curve *

.

h \4 2/ cosV
p= 2a sec3i/r

;

and hence that } ,

*

dir 2a

and that this differential equation is satisfied by the parabola

jr =- 4ay.
X

14. Show that for the curve in which s—aer

cp—s(s2 -c2)f.

15. Show that the curve for which s—yfSay (the cycloid) has for its

intrinsic equation s— 4a sin yjr.

Ifence prove p~4u^l -

16. Prove that the curve for which y
2—

c

2+s2 (the catenary) has for its

intrinsic equation s— c tan i/r.

Hence prove the part of the normal intercepted between the

curve and the .v-axis.

17. Show that for the curve .r
m+ym~km

we may write p in the form

k (cos
4 "

«-l

.}
<ft+ain <j>)

^
wjiere cosm(^.

,,2 m

Examine the cases m— 2, 1. m

18.

For the rectangular hyperbola

xy=lc\
•

r3
prove that p
r being the central radius vector of the point considered.
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333. Formula for Pedal Equations.

Since a curve and its * circle of curvature at any point P
intersect in three contiguous and ultimately coincident points

they may be regarded as having two contiguous tangents

common. Therefore the values of r+Sr and p+Sp are

dv
common in addition to those of r and p ;

i.e. the value of

is common. Now let 0 be the pole and C the centre of curva-

ture corresponding to the point P on the curve.

Then OC2= r2+p2— 2rp cos OPC
= r2+p2— 2rp sin 0
= r2+ p

2 -2pp.

Considering this as referring to the circle (for which OC and p
are constant) we obtain by differentiating

0=2r|- 2„
dr

and it has been pointed out that the values of r and ^ are

the same at the point P for the curve and for the circle.

Hence for the curve itself we also have

dr . v

<->

Ex. In the equation p1= Air+ B, which represents any epi- or hypo-

cycloid [p. 163, Ex. 6], we haVe

and therefore p cep.

The equiangular spiral, in whichp oc r, is included as the case in which

B=0 . #



CURVATURE. 263

334 Polar Curves.

We shall next reduce the formula to a shape suited for

application to curves given by their polar equations.

We proved in Art. 205

1 - U2+ (
dUY.

p
2
~ +

\deJ

Hence
$
<£>

+II1

or
# +iiiiTre

Now
rdr . 1

p = -
7 - and r=* ,r dp u

therefore
1 du 1

p ~ u3 dp~
3
J d2u\

f

or

/ , ,
/da\ni

r +
\,») }

p J dlu\
uXu+ deJ

335. This may easily be put in the ?*, 0 form thus :

—

Since
1

U= ,

r

we have
du 1 dr

dQ ~ r* d6’

and therefore
d*u 2 /dr\2 1 d2r

_

W~r\dd) ~r* d&’

therefore

f l l/<Jr\*\f

tr2 rXdO/ )
‘ p~

1 /I 2/dr\2 1 dV\
T^lr r

3\dd) r* <Z0*J

• W£)T
•mst-s

(J)
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336. Tangential-Polar Form.

In Art. 220 it was proved that

. d*p
.(R)

giving us a formula for the radius of curvature suitable for

j) t \fr equations.

Ex. It is known that the general p, \jr equation of all epi- and hypo-

eycloids can be written in the form

p~A sin Byp (p. 163, Ex. 6).

Hence p= A sin Byp — A in Byp,

: »ml therefore p cc p,

thus again proving the result of the Example in Art. 333.

337. Point of Inflexion.
*

At a point of inflexion the radius of curvature is infinite.

This is geometrically obvious from the fact that it is the radius

of a circle which passes through three collinear points. We
may hence deduce various forms of the condition for a point of

inflexion
;
thus if p= oo

,

we get

d'X*

= 0 from (A),

2*= 0 frora (D)>

09
'

dy/ 'dx'dy

u+

dx 'dy

dlu
d&2

= 0 from (i),

= 0 from (e),

d*r
r
dd2

= 0 from CO.

some of which have already been established otherwise.

338. List of Formulae.

The formulae proved above are now collected for convenience.

ds
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•: <c)

Ml)?
*

dx*

(D)

n=: (p
2+92)'s

^ rff— Zspq+tp2
(K)

(**+/*)*
p~ F'f—f'F"

00

/)=L<— <o)

II
.<5. (H)

<«*+»!*)*
p u\ii+u2)

•

(I)

(jf+ri*)
1
.

P
7-*4-2ri

8— r?*
2

0)
•

d?p
p-l’+'dp (K)

Examples.

]. Apply formula (h) to the curves

o rm+

1

P2=ar, ap—r~, p=

2. Apply formula (i) to the reciprocal spiral

an = 0.

3. Apply the polar formula, for radius of curvature to show that the

radius of the circle r—a cor r is ?•

4. Show that for the cardioide r=a(l 4-cos 0)

4a 0 ,

P“
3

COS
2

5 l'e

Also deduce the same result from the pedal equation of the curve, viz.,

• p*j2a=r\

5. Show that at the points in which the Archimedean spiral

intersects the reciprocal spiral r$**a their curvatures are >in the ratio 3 :

1
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6. For the equiangular spiral r—aem^ prove that the centre of curvature

is at the point where the perpendicular to the radius vector through the

pole intersects the normal.

7. Prove that for the curve r= a sec 26,

r*
P

3p3

8. For any curve prove the formula

in<K1+$)
where

dr

Deduce the ordinary formula in terms of r and 0.

i). Show that the chord of curvature through the pole for the curve

p=fir)

is given by chord=

2

\p~ =
<ip fir)

10.

Show that the chord of curvature through the pole of the cardioide

r=a(l+cos0) is ^r.

11. Show that the chord of curvature through the pole of the equi-

angular spiral* r—aem& is 2r.

12. Show that the chord of curvature through the pole of the curve

rm=amcosmO is —— •

m+I
Examine the cases when m= -2, — 1, 1, 2.

13. Show that the radius of curvature of the curve

r=asin nO

at the origin is --- •

2

14.

For the curve rm=amcoHrnO,

prove that

Examine the particular cases of a rectangular hyperbola, lemniscate,

parabola, cardioide, straight line, circle.

339. Centre of Curvature.

The Cartesian co-ordinates of the centre of curvature may
be found thus :

—

Let Q be the centre of curvature corresponding to the point

P of the curve. Let OX be the axis of x; 0 the origin ; x, y
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the co-ordinates of P; x,y those of Q ; \fr the angle the tan-

gent makes with the axis of x. Draw PN, QM perpendiculars

upon the jc-axis and PR a perpendicular upon QM. Then
x=OM=ON-RP

— ON— QP sin \]s

— x— p sin yjr,

and y =MQ=NP+RQ
=y+P cos \lf.

Now tani/r= jj^;

dy
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Involutes and Evolutes.

340. Def. The locus of the centres of curvature of all points

of a given plane curve is called the evolute of that curve. If

the evolute itself be regarded as the original curve, a curve of

which it is the evolute is called an involute.

The equation of the evolute of a given curve may be found

by eliminating x and y between equations (a), (j8) of the last

article and the equation of the curve.

Ex. Tofind the locus of the centres of curvature of the parabola

V4)ii

Here
rH

cS
II

Ml
li

Hence
- dor l \dx.
X X

dy
d:r

II+II1**

whence (r/~2(/?-
27r8- 27aJ,s

.
’

64a
3_

4

,
tf
3

.

‘4a5
’

3-r1
.

4a
1

Hence the equation of the evolute is

4(y -2a)3— 27cm:2.

341. Evolute touched by the Normals.

Let Pv P2, P3
be contiguous points on a given curve, and

let the normals at Pv P2
and at P

2 , P3
intersect at Qv Q2

respectively. Then in the limit when P
>2,
P

3
move along the

cutve to ultimate coincidence with P
x
the limiting positions of

Qv Q2 are the centres of curvature corresponding to the points

Pv P2 of the curve. Now Qx
and Q2

both lie on the normal at

P2> and therefore it is clear that the normal is a tangent to the
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locus of such points as Qv Q2 ,
i.e., each of the normals of the

original curve is a tangent to the evolute

;

and it will be seen

in the chapter on Envelopes that in general the best method of

investigating the equation of the evolute of any proposed curve

is to consider it as the envelope of the normals of that curve.

342. There is but one Evolute, but an infinite number of In-

volutes.

Let ABGD ... be the original curve on which the successive

points A, B
t
G, D

f
... are indefinitely close to each other. Let

a, b,c
t
... be the successive points of intersection of normals

at .A, C, and therefore the centres of curvature of those

points. Then looking at ABC... as the original curve, abed...

is its evolute. And regarding abed... as the original curve,

ABGD. .. is an involute.

If we suppose any equal lengths AA', BB\ GG\... to be

taken along each normal, as shoi* *• in the figure, then a new
curve is formed, viz., A'B'C'

..., which may be called a parallel

to the original curve, having the same normals as the original

curve and therefore having the same evolute. It is therefore

clear that if any curve be given it Can have but one evolute,

but an infinite number of curves may have the same evolute,

and therefore any curve may have an infinite number of

involutes. The involutes of a given curve thus form a system

ofparallel curves.
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343. Involutes traced out by the several points of a string

unwound from a curve.

Since a is the centre of the circle of curvature for the point

A (Fig. 60), aA=aB
= bB+ elementary arc ab (Art. 34).

Hence aA — bB= arc ab.

Similarly bB—c,C= arc be,

cG—dI)= arc cd,

etc.,

fF-gO= arcfg.
Hence by addition

aA —//(?= arc ab+&rc bo+... + arcfg
= arc ag.

Hence the difference betwten the radii of curvature at two

points of a curve is equal to the length of the corresponding

arc of the evolute. Also, if the evolute ahc... be regarded as a

rigid curve and a string be unwound from it, being kept tight,

then the points of the unwinding string describe a system of

parallel curves
,
each of which is an involute of the curve

abed..., one of them coinciding with the original curve ABC....

It is from this property that the names involute and evolute

are derived.

344. Radius of Curvature of the Evolute.

It is easy to find an expression for the radius of curvature at

that point of the evolute which corresponds to any given point

of the original curve.

Let 0 (Fig. CO) be the centre of curvature for the point a of

the evolute. The angle <h/r' between the normals at a, b

= the angle between the tangents at a, b

= the angle between the tangents at A , B to the original

curve

= S\Js.

And if s' be the arc of the evolute measured from some fixed

point up to a, and p the radius of curvature of the evolute at

a, and p that of the original curve at A, we have, rejecting

infinitesimals of order higher than the first, *

<Ss'= arc ah= <Sp,

, T . Ss r . Sp dp d2s

^ S\fs' d\fr dyf/*
9and therefore
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a being the arc of the original curve measured from some fixed

point up to A , and the angle which the tangent at A makes
with some fixed straight line.

345. From Articles 337, 340, it will follow that to an

inflexional or undulatory point on a curve will correspond an
#

asymptote on the evolute. For an inflexional point the evolute

will be asymptotic at opposite ends of the normal and on

opposite sides. For an undulatory point it will be asymptotic

on opposite sides at the same extremity.

Examples.

1. For the parabola

prove

8P being the focal distance of the point of the parabola whose co-ordinates

are (x, y).

2. Show that the circles of curvature of the parabola y
2~ 4<w: for the

ends of the latus rectum have for their equations

x2+y2 — 1

0

ax± 4ay - 3a2= 0,

and that they cut the curve again in the points (Da, q:6a).

3. Show that the evolute of the parabola y
2—4ax is the semicubical

y
2— 4ax,

x—2a + 3x, ,

J
T/=-

2

a*

„spi
p-2-

parabola 2

7

ay2= 4(x - 2a)3
,

and that the length of the evolute from the cusp to the point where it

meets the parabola ~ 2a(3v/3 - 1 ).

4. Show that in a parabola the radius of curvature is twice the part of

the normal intercepted between the cur e and the directrix.

5. Prove that in an ellipse, centre C,
' l

ie radius of curvature at any

point P is given by
_C1P_a?b2 (rtf

° ab p3 ab

where a, b are the semi-axes, r, / are the (ocal distances of l\p the per-

pendicular from the centre on the tangent at P
,
and CD the semi-diameter

con
j
ligate to CP,

6.

Show that in any conic

__ (normal)3

^~ (semi-latus-rectum)2
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7. For the ellipse ?!+ = 1

,

a? b 2

prove £=° ^
a*

- ft
2 - a2

..

.y=-*4-r
j

Hence show that the equation of the evolute is

-f (fty)® — (a2 - ft
2
)®,

and prove that the whole length of the evolute

S. Show that the co-ordinates of the centre of curvature of any curve

may be written

'
(Fir d~f

1 L
dif 1

da?

|

*div' 2^'*
df djr

j

Intrinsic Equation.

34G. The relation between the length of the arc (s) of a

given curve, measured from a given fixed point on the curve,

and the angle between the tangents at its extremities (\fs) has

been aptly styled by Dr. Whewell the Intrinsic Equation of

the curve. For many curves this relation takes a very elegant

form. The name seems specially suitable to a relation between

such quantities as these, depending as it does upon no external

system of co-ordinates. The method of obtaining the intrinsic

equation from the Cartesian or polar relation is dependent in

general upon processes of integration. If the equation of the

curve be given as y=f(x), the axis of x being supposed a

tangent at the origin, and the length of the arc being measured

from the origin, we have

tan \Jr=f(x), (1)

and gWl+DW- (2)

If s be determined by integration from (2) and x eliminated

between the result and equation (1), the required relation

between a and yfr will be obtained.
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Ex. 1. Intrinsic equation of a circle.

If yfr be the angle between the initial tangent at A and the tangent at

the point P, and a the radius of the circle, we have

PoA =PTX= l/r,

and therefore s—ayjr.

A T X
Fig. Gl.

Ex. 2. In the case of the catenary whose equation is

y— e cosh ~

the intrinsic equation is s—c tan yjr.

For tan y/s— — sinh
d.r c

and 1 -f siuh*
?

' — cosh

,

dx e, e

and therefore s— csinli^j

the constant of integration being chosen so that x and s vanish together,

whence s~c tan yfr.

Examples.

1. Show that the cycloid .r— a(0+sin 0))

y— a{ 1 - cos 0) /

has for its intrinsic equation ,<*=4a sin yjr.

2. Show that the epi- or hypo-cycloid given by

x= (a+ £>)eos 0 - b c os
b

y=(a+6)sin 0-6 sin-i^0

has an intrinsic equation of the form

s^AshiByjr.

347. Intrinsic Equation of the Evolute.

Let 8=f{yf/) be the equation of the given curve. Let s' be

the length of the arc of the evolute measured from some fixed

point A to any other poixit Q. Let 0 and P be the points on
u.d.c. s
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the original curve corresponding to the points A, Q on the

evolute
; p0, p the radii of curvature at 0 and P; \f/ the angle

the tangent QP makes with OA produced, and yjs the angle the

tangent PT makes with the tangent at 0.

Then \J/
= yjs, and s'=

p

- p0=^- p0,

or #'=/W -/><,»

the intrinsic equation of the evolute.

348. Intrinsic Equation of an Involute.

With the same figure, if the curve AQ be given by the

equation s'—

P= 8'+Po> p=^> and \Js =

whence s=f{f(^')+ p0 }d\fr'.

we have

349. Evolutes of Cycloids or Epi- and Hypo-Cycloids.

If we apply the result of Art. 347 to the intrinsic equation

s=A sin Byjr, we get for the equation of the evolute

8=AB cos B\f

V

—
p0,

or, dropping the dashes,

s=APcos B\Jr,

if 8 bo supposed measured from the point where ^=

This proves that the evolute of an epi- or hypo-cycloid is

a similar epi- or hypo-cycloid. Also, the case in which 2?=1

shows that the evolute of a cycloid is an equal cycloid.

[For further information on Intrinsic Equations the student is referred

to Boole, Differential Equations
, p. 263, and to Camb. Phil. Trans vol.

VIII., p. 689# and vol. IX., p. 150.]



CURVATURE. 275

Examples.

1.

If *4 be the area of the portion of a curve included between the curve,

two radii of curvature, and the evolute, prove

2. Show that the evolute of an equiangular spiral is an equal equiangular

spiral.

3. Show that the intrinsic equation of the evolute of a parabola is

s= 2cr(sec*^r — 1).

4. Given the pedal equation of a curve, viz., p =/(?•) ;
show that the

pedal equation of its evolute may be found by eliminating p and r between

this equation and the equations

r'
a=p2 + r! - 2p/9, (u)

yw-’ -p\ (0)
Again, that if the equation p'— f{r') of a,curve be given, the general

differential equation of its involutes may be obtained by eliminating p\ n*

between this equation and the equations (a),
(ft).

5. Show that the curve whose equation is

is an involute of a circle, and that its intrinsic equation is

v/-*~ a
2

’

6. Show that the evolute of the epi- or hypo-cycloid denoted by

2^—Ar+B
is another epi- or hypo-cycloid denoted by

r ~ Ar
'i+D

{
1 ~

a}
7. Show that the pedal equation of the evolute of the curve

rm=amsmmG
is obtained by eliminating r between

>2 _ (£
m+ (m ~ -

1

)^
m

(m+ i)V2m~2

and p*= r*~— .

•

a**

Contact.

350. Firsts consider the point P at which two curves cut.

Fig. 63.

It is clear that in general each has its own tangent at that
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point, and that if the curves be of the mth and nth degrees

respectively, they will cut in mn— 1 other points real or

imaginary.

Next, suppose one of these other points (say Q) to move
along one of the curves up to coincidence with P. The curves

now cut in two ultimately coincident points at P, and there-

fore have a common tangent. There is then said to be contact

of the first order. It will be observed that at such a point the

curves do not on the whole cross each other

.

Again, suppose another of the mn points of intersection

(viz., R) to follow Q along one of the curves to coincidence

with P. There are now three contiguous points on each curve

Fig. 64.

common, and therefore the curves have two contiguous tangents

common, namely, the ultimate position of the chord PQ and

the ultimate position of the chord QR. Contact of this kind is

said to be of the second order
,
and the curves on the whole

cross each other.

Finally, if other points of intersection follow Q and R up to

P, so that ultimately k points of intersection coincide at P,

there will be 1 contiguous common tangents at P, and the

contact is said to be of the (A:— l)th older. And if k be odd

and the contact of an even order the curves will cross, but if

k be even and the contact therefore of an odd order they will

not cross.

351. Closest Degree of Contact of the Conic Sections with a

Curve.

The simplest curve which can be drawn so as to pass

through two given points is a straight line,

do. three do. circle,

do. four do. parabola,

do. five • do. conic.



CURVATURE. 277

Hence, if the points be contiguous and ultimately coincident

points on a given curve, we can have respectively the

Straight Line of Closest Contact (or tangent), having contact

of the first order and cutting the curve in two ultimately

coincident points, and therefore not in general crossing
,

its curve
;
the

Circle of Closest Contact,
having contact of the second order

and cutting the curve in three ultimately coincident points,

and therefore in general crossing its curve (this is the

circle already investigated as the circle of curvature)
;
the

Parabola of Closest Contact
,
having contact of the third order

and cutting the curve in four ultimately coincident points,

and therefore in general not crossing

;

and the
•V

Conic of Closest Contact
,
having contact of the fourth order

and cutting the curve in fine ultimately coincident points,

and therefore in general crossing.

It is often necessary to qualify such propositions as these by

the words in general. Consider for instance the “circle of

closest contact ” at a given point on a conic section. A circle

and a conic section intersect in four points real or imaginaiy,

and since three of these are real and coincident, the circle of

closest contact cuts the curve again in some one real fourth

point. But it may happen
,
as in the case in which the three

ultimately coincident points are at an end of one of the axes of

the conic that the fourth point is coincident ivith the other

three
,
in which case the circle of closest contact has a contact

of higher order than usual, viz., of the third order, cutting the

curve in four ultimately coincident points, and therefore on

the whole not crossing the curve The student should draw

for himself figures of the circle of closest contact at various

points of a conic section, remembering that the common chord

of the circle and conic, and the tangent at the point of contact

make equal angles with either axis. *The conic which has the

closest possible contact is said to osculate its curve at the

point of contact, and is called the osculating conic. Thus the

circle of curvature is called the osculating circle, the parabola

of closest contact is called the osculating parabola, and so on.
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352. Analytical Conditions for Contact of a given order.

We may treat this subject analytically as follows.

Let y — ^(x)

)

y= '!'(%)}

be the equations of two curves which cut at the point P(x, y).

Consider the values of the respective ordinates at the points

Pv P2 whose common abscissa is x+h.
Let MN=h.

Then NP
X= <f>(x+ h),

NT.
2= \fs(x+h),

and P‘iP\=NP-
l
—yP2= <j>(x+h)— \/s(x +'h)

= [<p(x)
- V'(®)]+

-

'A'(^)]

+
I

j*w\x)-rw]+--

If the expression for P2
P

X
be equated to zero, the roots of

•the resulting equation for h will determine the points at which

the curves cut.

If the equation has one root zero and the curves

cut at P.

If also <f>(x)= ylr'(x) for the same value of xf
the equation

has two roots zero and the curves cut in tivo contiguous

points at P, and therefore have a common tangent.

The contact is now of the first order.

If also <j>"(x)= \}s"(x) for the same value of xt
the equation

for h has three roots zero and the curves cut in three
K ultimately coincident points at P. There are now two

contiguous tangents common, and the contact is said to

be of the second order

;

and so on.

Similarly for curves given by their polar equations, if
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r=/(0), r=<f>(9) be the two equations, there will be n+1
equations to be satisfied for the same value of 0 in order that

for that value there may be contact of the nth order, viz.,

rw-p(e>.

353. Osculating Circle.
'

•

The circle of curvature may now be investigated as the

circle which has contact of the second order with a given

curve at a given point.

Suppose y=/(a) (1)

to be the equation of the curve.

Let <£»— Zc)
2
-h (7/— 2/)

2= p
2

; (2)

be the equation of the circle of curvature.

By differentiating (2) we have '

a^x+(y-i)ffy= 0, (3>

and differentiating again

Now the x
, y, ^ of equations (2), (3), (4) refer to the

circle. But, since there is to be contact of the second order

dij (/,“'//

with the curve y =f(x) at the point (x, y) J
and have the

same value as ivhen deduced from the equation to the curve,

dv dhi
i.e., we may writef(x) for and f"(x) for —
From equation (4)

i+r
y-y= — dl

y
tlx*

- -7»-’

whence x—x=
dy
dx{

1 + dl) j

<Py

dx2

and by squaring and adding

P=~
dx.

Tfiy

f _/^)[l + {/»} 2
]

f'(x)

_+[i
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such a sign being given to the radical as will make p positive,

'i.e.
t
if .

':

2
be positive we must choose the + sign for the num-

dX
(Pv

erator, and if be negative we must choose the — sign.

• The values of x and y are the same as those found geometri-

cally in Art. 339, viz.,

dx2

dhj

dx*

354. Conic having Third Order Contact at a given point.

The locus of the centres of all conics having third order

contact with a given curve at a given point
(
i.e., cutting the

curve in four ultimately coincident points) is a straight line

which passes through the point of contact.

Let P be a point on the curve and G the centre of one of

the conics having third order contact with the given curve at

P. Let CD be the semiconjugate to GP and GY a perpendi-

cular on the tangent at P.

Let CP= r
,
GD=r\ CY=j), and let PG make an angle

<f>

with the normal at P.

Then we have r2+V2= a2 + b2
,

and pr'= ab
t

and therefore rdr+ r'dr = 0

;

CTP r
'8

P~ab~ ab ’
(See Ex. 5, p. 271)and for a conic
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therefore
dp __ 3r'- d/
ds ab (is

3r' rdr

ab ds

__3r </>•__
g
sin^

7) C&f
~~

* COS
(f>

for ^ = cos OPT'= — sin 0, the arcs of the curve and of thtf

conic being measured from the points 0 and 0' up to P, and

^ = cos 0

:

/V* *

therefore / = 3 tail 0,

nnd tan </) = ], where is found for one of the conics.

But since the conife and the curve have contact of the third

order they have the same tangent, the same tile same
^1^

ft (/ (vf/
W

and the same at the point of contact. They therefore also

have the same p and the same
f*y

for p depends on ' and f
( ^ (f'W (IS

im
(W
lienee the value of 0 found above is the same for all the

conics, and depends only upon the shape of the curve at the

point of contact. The locus of all such centres is therefore a

straight line through the point of contact inclined in front of

the normal at an angle tan* 1

^ where ^ is found from
the curve .

355. This result may be established analytically as follows :

—

Referring the conic to the
#
common tangent and normal as axes, its

equation takes the form 2y— ajc2 + 2A&, 1 hyl
.

If y be expanded in powers of x, by Alaclaurin’s Theorem we have

/«2 „3

y-^+y
2!
+r

3
-

!

+ ...,

as in Art. 329 ; p, q, and r being the vadues of and ^ at the

origin. Since there is contact of the third order the values of these are

the dame for the conic and for the curve and are therefore known quanti-

ties. Moreover, since the tangent has been chosen for the .r-axis, we have

p— 0.
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Substituting in the equation of the conic we have

K4 +4+ -") s^+M4?---) +b(4+-"^
giving

and thus determining a and h in terms of the known quantities q and ft

Also the centre of the conic lies on the line

ax -h hy— 0,

or 3q2x+ry=0,

which is a straight line through the point of contact inclined in front of

the normal at an angle tan-1
(
—~)

Also since p= (1 +jo2)^
-1

which, when

becomes

J={3(1
+p*)ipq~' ~ (1

^=° alMl J=1
>

dp _ _ r

ds oa
’

Hence the above angle may be written

tan

as in the preceding article.

-i/I^
\3 ds)

356. Osculating Conic.

Wo can now pick out the particular conic which has fourth

order contact with the given curve at the given point.

Let 0 be the centre of curvature of the point considered and

C the required centre of the conic of closest contact. Let P
x

be a point on the curve adjacent to the given point P. Join

CP, CP1
and draw P^ at right angles to CP.
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Let OPC— <p: 0^ = <p 6
<fi}

PC— R.

Then PEP^POE+q,
and also =P

1
CE+

$

+ S<p,

whence POE=PjjE+ 8<j>.

Also, neglecting infinitesimals of higher order than the first,
*

PP^Ss,

pQe= Ss

and

Hence

p pp ___
Pi-W 3s cos <p

Ss 08 COS 0 ,

.

p
= -R

or, proceeding to tl\e limit,

COS0_1 (l<j)

jft p

where

ds*

And since the contact is of the fourth order, is the same
ds

for the curve as for the conic
,
and may therefore be supposed

derived from the equation of the curve.

These equations determine the position of 0.

357. Tangent and Normal as Axes. Co-ordinates of a Point

near the Origin in terms of the Arc.

When the tangent and normal at any point of a curve are

taken as the axes of x and y it is sometimes requisite to express

the co-ordinates of a point on the curve near the origin in terms

of the length of the arc measured from the origin up to that

point.
r,'

Assume x=a+a
x
s+

a

2^ -fa3^+ ...,

g2 #3

y=b+b
18+ &

22
j

+
#

b3g i
+ • • •

»

the letters a, av .., 6, bv .. denoting constants whose values* are

to Jbe determined, and s being the length of the arc. Then,

when 8=0, x and y both vanish, and therefore

a= 6= 0.
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Again, by Maclaurin’s Theorem

(cfo)o
^C°S^0

[the suffix zero denoting

t /dy\ , . , v „ the values at the origin]
i

'
=W„ _(<,ra 'a=0'

/c/A/.'N /COS ^/r sin \lr dp\ 1««-(—
3)0
-H p

2
p
2 ds)o~~F

. _ A%\ _/ silM/r COS\/r ^p\ _ 1 C?p
>3 W/o“V ' p‘- p2* ds)o~~ p

2
cis

etc.,

whence #= *— ~ M +...,
• Up*

_ s*
2 s3 rZp

y~2
P~Gp* ds~

EXAMPLES.

1 . Determine the cnrvaturo of the curve

«2/
:i = iK

4

at the origin.

2. Find the radii of curvature of the two branches of the curve

(x - y)
2{x - 2y)(x - 3y) — 2a(x3 —

y

3
)
- 2a2(x 4- y)(x— 2y)

— 0

at the origin. [Oxford, 1888.]

\ (hi /~2 2

3. For the curve y
m

j- =V «m - ?/*,

prove that the radius of curvature is m times the normal.

4. Establish the formula

[Coll. Exam.]

p — r
JO I

d,j

r fdO\
2 c/vn

LW
5. Find the equation of the circle of curvature at any point of the

curve y'J = vers“ 1a,/a.

6. If p be the radius of curvature of a parabola at a point whose

distance, measured along the curve, from a fixed point is «, prove

that
[Oxford, 1889.]
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7. A curve is such that the normal at any point passes through

the centre of curvature of the corresponding point on the pedal with

respect to a given point. Show that the curve is an equiangular

spiral. [Oxford, 1890.]

8. If p and />' be the radii of curvature at corresponding points of

curve and its evolute, and p, q, r are the first, second, and third

differential coefficients of y with respect to x, prove that

p'h>= {3p<2
2 -r(l +p-)}/q2.

9. The projections on the as-axis of the radii of curvature at corre-

sponding points of y = log sec x and its evolute are equal.

# [Coll. Exam.]

10. Show that the radius of curvature of the point of the evolute

of the curve rn = ancos n6

corresponding to r
,
0 is -

n ~
\ r sec n9 tan nO.* 6

’ (n+ l)2 ,
[Oxford, 1889.]

11. A tangent to the evolute of a parabola at the point where it

meets the parabola is also a normal to the evolute at the point where

it again meets the evolute. [Coll. Ex^m.]

12. If p1
be the radius of curvature at any point of a parabola, p2

the radius of curvature of the corresponding point of its first nega-

tive pedal with respect to the focus, show that

27ft
4 = 32W

where l is the latus rectum. [Oxford, 1889.]

13. P, Q,
R, S, T are five points on a curve of continuous curva-

ture whose abscissae are in arithmetical progression, the common

difference being 8x
;
show that as 8x diminishes without limit, PT,

QS, and the tangent at R ultimately intersect in the same point, and

that in the parabola y
2 = mx the locus of this point is a parabola

with the same vertex and axis. [Coll. Exam.]

14. The radius of curvature at the point t on the curve

r=J\t) ->

.
6=>Fyt)J

is given by the equation
'

s2p-i — 2r26 + rrU — tt6 + r2
#'3

. . ds .. d <2r .

where * =
d?

r =
di*

etC
‘ [Oxford, 1888.]

15. Show that the parabola whose aris is parallel to the axis of y,

and which has the closest possible contact with the curve

• aw-1y = x
n

at the point (a, a), has for its equation

n(n - l)a^= 2ay + 2n(n - 2)aa; - (n - l)(n - 2)a*.
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16. If x, y be the co-ordinates of a point P of a curve OP passing

through the origin 0, then the radius of curvature at 0

= \Lt- .

*+£
x sin o*— y cos a

where y = x tan a is the equation of the tangent at the origin.

Hence show that the radius of curvature of the curve

x* + y
2 ~ 2a(x + y)

at the origin is 2aJ2.

17. Show that the arcs of the two curves

xy -- a2
,

a? = 3a2
y

turn through the same angle between any the same pair of ordin-

ates. Also show that the ratio of the radii of curvature at points

on the two curves which have the same abscissa varies as the square

root of the ratio of the ordinates. [Oxfori>, 1887.]

18. The radius of curvature of the first negative pedal of;? -J{r)

at a point corresponding to (;?, r

)

on the original curve is

* 2r3 r4 dp

p2 p
[i dr

19. Show that the curvature at any point of the pedal of an epi-

or hypo-cycloid is

where a is the radius of the fixed circle and r and p refer to the

pedal curve. [Sidney Coll., Camb.]

20. If r, p, p be respectively the radius vector, perpendicular from

the origin on the tangent and the radius of curvature at any point of

a curve, prove that the radius of curvature at the corresponding

point of the reciprocal polar with regard to the origin is

*

F'P

where k2 is the constant of reciprocation.

Hence show that the reciprocal of a circle is a conic with the origin

as focus.

21 . If r, p> p be the same as in the last question, show that the

radius of curvature at the corresponding point of the inverse with

regard to the origin is

k2 being the constant of inversion.

22. Find the radii of curvature of the confocal orthogonal Limagons

r sin2a = a(cos 6 - cos a),

r sinh2
/3= a(cosh f3

- cos 6)

at a point of intersection, in terms of a and j3. [Math. Tripos, 1884.]
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2R Show that the intrinsic equation of the curve

e‘ = sec is - =i
a

24. If A.
-1

, fir
1 be the ratios of any arc of the curve

8~c tan

measured from the point ^ = 0, to the corresponding arcs of the

evolute, and of that involute which meets the curve at the point ^ - 0,

find the relation between A and /*. [Oxford, 1888.]

25. An inextensible wire in the form of a plane curve is bent so

that each point of the #ire moves a distance u in the direction of the

normal to the, curve at that point
;
prove that

P(diA2

+
u ^ 2

v\ds) p
'

[Oxford, 1888.]

26. Show that the locus of the centre 6f the rectangular hyperbola,

having contact of the third order with the conic

Ax2 + By2 = 1,

has for its equation x2 + y
2 =

^
+ By2

.

27. Show that the locus of the centres of the rectangular hyper-

bolae, having contact of the third order witli the parabola

y
2 - 4ax,

is the equal parabola y
2 + 4a(x + 2a) =- 0.

28. If the equation to a curve passing through the origin be

u
i + ^2 + w3 + ...=0,

where un is a homogeneous function of x, y of n dimensions, show
that the general equation to all conics having the same curvature at

the origin as the given curve is

. u
x + u

2 + (lx + my)u
1
= 0.

Thence find the circle of curvature.

29. Show that the circle of curvature at the origin for the curve

x + y = aa. 2 + by2 + ca?

is (a + b)(

x

2 + y
2
) = 2x , 2y.

30? Obtain the equation of the conic which osculates the curve

ay = x2 + a
x
xy + a$2 + + b

x
x2y + b^cy2 + b$f

at the origin.

PQ is the common chord of a
.
parabola1

y
2 = 4ax

and its osculating circle at P. Prove that the locus of the point of

intersection of PQ with the perpendicular drawn on it from the

vertex is the cissoid y*(3a - x) ** cc
8
. [Oxford, 1890.]
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31. Show that when the osculating circle has third order contact

with its curve the curvature is measured by

d*p

dr1

32. A line is drawn through the origin meeting the cardioide

r = a(l-cos0)

in the points P, Q,
and the normals at P and Q meet in C. Show

that the radii of curvature at P and Q are proportional to PC and QC.

33. If PQ be an arc not containing a point of maximum or mini-

mum curvature, the circles of curvature at P, Q will lie one entirely

within the other. [^ath. Tripos.]

34. Determine the equation of the circle which touches the curve

r=m
at the point (rv 6J and goes through another point (r

2,
0.2)

on the

curve
\
and hence derive the expression for the radius of curvature

in polars. ’ [Math. Tripos, 1884.]

35. j3how that the osculating conic of the catenary

at a point whose ordinate is ^J\ 0 is a parabola.
[Oxford 1889 ]

36.

An equiangular spiral has contact of the second order with a

given curve at a given point
;
prove that its pole lies on a certain

circle, and that, if the contact be the closest possible, the distance of

the pole from the point of contact is

P

v [Math. Trtpos.J

37.

If accented letters refer to a point on a curvq and unaccented

letters to the corresponding point on the involute, prove

y^y'Tp
dy

ds
r

Show how, by means of these equations and

the equation of an involute of a given curve may be found ;
s' being

supposed known in terms of the co-ordinates of the extremities of

the arc.

38.

If a right line move in any manner in a plane, the centres

of curvature of the paths described by the different points in it in

any position lie on a conic.
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39. If, on the tangent at each point of a curve, a constant length

be measured from the point of contact, prove that the normal to the

locus of the points so found passes through the corresponding centre

of curvature of the given curve. [Bertrand.]

40. If through each point of a curve a line of given length be

drawn, making a constant angle with the normal to the curve, tho*

normal, to the locus of the extremity of this line passes through the

corresponding centre of curvature of the proposed curve. [Bertrand.]

41. If on the tangent at each point of a curve a constant length e

bo measured from the point of contact, show that tho radius of curva

ture of the cuijve locus of its extremity is given by

>«*,.
p- + c3 -

* cfy

where p and ^ refer to^the corresponding point of the original curve.

42. If through each point of a curve a lino of given length c be

drawn, making a constant angle a with the normal at that point, tho

radius of curvature of the locus of its extremity is given by

, (p
2 + c2 - 2pc cos a)-

P =— — —-

—

p
1 + c2 - 2pc cos a - c sin a

ay
where p and \p refer to the corresponding point of the original curve.

43. If on each tangent to a given curve a length be measured from

the point of contact equal to the radius of curvature there, the centre

of curvature at any point on the locus of the extremity of the mea-

sured length is at the centre of curvature of the corresponding point

of the original curve.

44. Show that, the equation of the involute of the catenary

y ^ccosh?

which begins at the point where

is the Tractrix

a = 0, y = c,

x — c cosh"1- - Jc2 - w2
.

y

45.

If a straight line be drawn through the pole perpendicular to

the radius vector of a point on the equiangular spiral

cot CLr = aeu

to mefet the corresponding tangent, show that the distance between

the point of intersection and the point of contact of the tangent is

equal to the arc of the curve measured from the pole to the point of
B.D.C. t
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contact. Hence prove that Ijhe locus of this point of intersection is

one of the involutes of the spiral, and show that it is an equal equi-

angular spiral.

4G. A fixed oval curve on a smooth horizontal plane is surrounded

by a smooth endless string, and a particle is projected inside the

string so as to move round, keeping the string stretched. If t and i!

are the lengths of the straight portions of the string at anytime;

</*, </>' the inclinations of these lengths to a fixed line
; and />, p the

radii of curvature at the points of contact
;
prove that

nit +

t

d,:

d<i> w=pt-pt'.
[Mati;. Tripos, 1885.]

17. A curve is given by the equation

^‘
2» »

rn) ~ 0

connecting the distances of a point on the curve from n fixed points

in its plane, and denotes the angle which r, makes with the

tangent to the curve
;
prove that the curvature at any point is given

18. Prove that in the Cartesian ova.

[Matii. Tripos, 1889.]

l\r
i
+ ^2r2

“ constant

where r
x
and r

2
are the distances of a point P from two fixed points

A and 7i, the curvature at P is

!,</., +//.OS \)V„ + l
2
(l

2 + ^cos \)\
r
i
r
-A

l
i‘ + 2V2

C0S X +

where x i» the angle APB. [Math. Tripos, 1886.]

49. Prove that the radios of curvature at any point of the curve

mr + lr
f = Ic

4IJc { Pc - m(lr + mr') }
$

P - m1
(4P - iri

2)c - + rm)

where r and r are the distances of a point from two fixed points, and

c is the distance between these two points. [Coll. Exam.]

50. Two equal circular discs of radius a with their planes parallel

aro, fastened at their centres to a bar, the discs being inclined to the

bar at an angle a. The two wheels thus formed being rolled along a

plane, prove that the intrinsic equation to the track of either wheel

on the plane is sin $ « cos a sin
s

t

a
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Prove that in this curve the product of the radius of curvature and

the normal is constant, the normal being terminated by the straight

line which divides the curve symmetrically. [Math. Tripos, 1878.]

51.

If the tangent and normal to a curve at any point be taken as

the axes of x and y respectively, and if 8 be the distance, measured

,

along the arc, of a point very near to the origin, show that the

Cartesian co-ordinates of that point are approximately

s3 s4 do
X~*~6^+ 8p*

JL fIf, -
S4Jl-2(dp\\nd2

l\...
2p (op 2 da 24p

3
\ \dsj ds2

j

9

the values of p, and ^ being those at the origin.
ds da2

52. If a line be drawn parallel to the common tangent of a curve

and its circle of curvature, and so near to it as to intercept on the

curve a small arc of length s measured from the point of contact, of

the first order of small quantities, show that the distance between

the two points on the same sido of the common normal in which the

line cuts the curve and the circle of curvature is — -f*9
i.e.

y
is of

6p da

the second order of small quantities, the values of p and being

those at the point of contact
; and again, if a line be drawn parallel

to the common normal, the distance between the points of intersec-

tfii (]p
tion with the curve and the circle is - /- and is of the third order

6

p

w da

of small quantities.

53. Prove that the circle

J2(x2 + 1

r

+ 2) = 3(tf + y)

has contact of the third order with the conic

bx2 - Gxy -f 5y2
- - 8. >

54. Show that for the portion of the curve

a5
y
2— x7

very near the origin the shape of the evolute is approximately given

by 1225ary= 1 6ah

55. The conic whose focus is at the pole and which has second

order contact with u —J\0) at the point 0 = a has for its equation
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56. If a chord of an ellipse be drawn to cut the evolute of the

ellipse at right angles, three times the difference between its seg-

ments intercepted between the evolute and the ellipse is equal to the

diameter of curvature of the evolute at the point of intersection.

[Math. Tripos, 1878. J

57. If in the plane curve <£(as, y)-- 0,

we have at any point ^ = 0, = 0, = 0
ox oy ox*

prove that the curvature of one of the branches of the curve which

passes through that point is

3 3.r3 \dxdy) [Caius Coll. , Camb. J

58. If 9 be the angle between the normal at any point P of a plane

curve </>(&•, y) « 0,

and the line drawn from P to the centre of the chord parallel and

indefinitely near to the tangent at P
,
prove that

cos 0— b? -2*pq+ a
f. ,

Jp~ + </\/ {
(Ir + h’)p'2 - 2(« + b)hpq+ (a3 + hr)p2

}

where

[Townsend.]

59. A curve is such that any two corresponding points of its

evolute and an involute are at a constant distance. Prove that the

line joining the two points is also constant in direction.

60. Prove that at corresponding points of a plane curve traced on

a cylinder and its development when the surface of the cylinder is

developed into a plane, the ordinates drawn to corresponding axes

which arc perpendicular to the generating lines of the cylinder are

in a constant ratio; prove also that the product of the radius of

curvature and the normal intercepted by the axis is the same at

corresponding points of the curve and its development.

[Math. Tripos, 1878.]



CHAPTER XI.

ENVELOPES.
•

358. Families of Curves.

If in the equation <f>(x, y, c) =0 we give any arbitrary numeri-

cal values to the constant c, we obtarn a number of equations

representing a certain family of curves
;
and any member of

the family may be specified by the particular value assigned to

the constant c. The quantity c, which is constant for the* same

curve but diiferent for different curves, is called the parameter

of the family.

359. Envelope. Definition.

Let all the members of the family of curves <j)(x, y, c)=0 be

drawn which correspond to a system of infinitesimally close

values of the parameter, supposed arranged in order of magni-

tude. We shall designate as consecutive curves any two curves

which correspond to two consecutive values of c from the list.

Then the locus of the ultimate points of intersection of consecu-

tive members of this family of curves is called the envelope

of the family.

360. The Envelope touches each cf the Intersecting Members

of the Family-

Let A, B, C represent three con-ecutive intersecting mem-

bers' of the family Let P be the point of intersection of A
and B, and Q that ofB and G.

293
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Now, by definition, P and Q are points on the envelope.

Thus the curve B and the envelope have two contiguous points

common, and therefore have ultimately a common tangent, and

therefore touch each other. Similarly, the envelope may be

shown to touch any other curve of the system.
•

361. To find the Equation of an Envelope.

To find the equation of the envelope of the family of curves

of which y , c)= 0 is the typical equation.

Let </>(x,y,c) = 0,

</>(?, V, c+&)= (),]
1 '

he two consecutive members of the family. Expanding the

latter we have
• <3

y, c)

+

V> <0+ • • • = 0.

*

Hence in the limit, when Sc is infinitesimally small, we obtain

• 0
y><*)=

o

as the equation of a curve passing through the ultimate point

of intersection of the curves (a).

If we eliminate c between the equations

y , c) = ()

3
and

dc^
X‘ V '

C^= °

we obtain the locus of that point of intersection for all values

of the parameter c. That is, we obtain the equations of the enve-

lope of the family of curves of which <f>(x, y, c) = 0 is the type.

The polar curves 0, c) may be treated in the same manner.

Ex. Find the envelope of the system of straight lines of which y=cx+ a

is the type
9
c being the parameter and (a) constant for all lines of the system .

Here </>(#, c)=y-cx-”
c

and 1!+i1!x-VwsS

therefore
•

+1li

whence y=±x*J
a
+

or y2=z4aXy

— ± 2•Jax\
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a parabola, which is therefore the envelope. In other words, ever}'

straight line, obtained by giving any arbitrary special value to e in the

equation y=cx +
a

>
touches the parabola y

1— 4a.r.

302. The Envelope of A\*+2B\+C=Q is B*=AC.
If A, By C be any functions of x rand y,

and the equation of

any curve be A X2+ 2B\+ C= 0,

X being an arbitrary parameter, the envelope of all such curves

is B*=AC.
For we have to eliminate X between

• A\2+2B\+ U=Q
and 2AX+ 2fi=0,

and the result is clearly B2= A C.

The result of the example of Art. 301 may be obtained in this way
;
for

the equation y —mx -f
a

m m

may be written m\r - my 4-a = 0,

and therefore the envelope is y
2— ^ax.

363. Another Mode of Establishing the Rule.

The equation AX2+2ifX+(7=0 may be regarded as a quad-

ratic equation to find the values of X for the two particular

members of the family which pass through a given point (x, y).

Now, if (xf y) be supposed to be a point on the envelope, these

members will be coincident. Hence for such values of x
, y the

quadratic for X must have two equal roots, and the locus of

such points is therefore B2= AC.

The envelope of the system <j>(x
, yy

c) = 0 might be considered

in a similar manner. And it is proved in Theory of Equations

that if /(c) = 0 is a rational algebraic equation for c, the con-

dition that it should have a pair of equal roots is obtained by

eliminating c between the equ itions

m o,

f(0) = 0,

a result agreeing with that of Art. 961.

Examples.

1. Show that the envelope of the line 1, where a6=c2
,
a constant,

is 4xy—c2
.
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2. Find the equation of the* curve whose tangent is of the form

y—mx +m4
,

m being independent of x and y.

3. Find the envelope of the curves

<rcos 0 Zrsin 0_c2

• x y
~~
a

for different valueH of 0.

4. Find the envelope of the family of trajectories

y=

x

tan 0 - \<)~ l

~V~cosJ0
0 being the arbitrary parameter.

5. Find the envelopes of straight lines drawn at right angles to tan-

gents to a given parabola and passing through the points in which those

tangents cut (1) the axis of the parabola,

(2) a fixed line parallel to the directrix.

6. Find the envelope of straight lines drawn at right angles to normals

to a given parabola and passing through the points in which those normals

cut the axis of the parabola.

7. Aperies of circles have their centres on a given straight line, and

their radii are proportional to the distances of their corresponding centres

from a given point in that line. Find the envelope.

8. P is a point which moves along a given straight line. /W, PN are

perpendiculars on the co-ordinate axes supposed rectangular. Find tlie

envelope of the line MJSf.

0. A straight line lias its extremities on two fixed straight lines and

forms with them a triangle of constant area. Find its envelope.

10. Show that the envelope of the lines whose equations are

' x sec +

y

cosec"0—

c

is a parabola touching the axes of co-ordinates.

11. Show that the system of conics obtained by varying A in the

equation
tX

\ +2A^+fT,= 1 - A‘
J

a2 ab b“

have for their envelope the parallelogram whose sides are

.r=±a, y=±b.

12. Show that the envelope of the line

lx+my+ 1—0,

where the parameters ly m are connected by the quadratic relation

al2+2ldm+ bmr + 2yl+ 2\fm + c -= 0,

is the conic Ax2
-I- 2Hxy+ By2+ ZGx 4- 2Fy+C= 0,

A y By Oy Fy Gy H being minors of the determinant

a, h, g

/|
l g. t o
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364. The c-Discriminant.

The function of x and y,
whose vanishing expresses that

y, c)= 0 has equal roots for c, is, when expressed in its

simplest rational integral form, called the c-discriminant of </>,

and may be denoted by Ac0.

Hence the envelope for different values of c will be given in

the equation Ac <j> = 0.

365. Singularities.

The equation Ac<j> == 0 may contain loci other than the true

envelope. •

Imagine a curve with a double point N to be made to move
in a given manner altering its shape

#
as it travels but retaining

the same general characteristics. Take a point P near the

locus of the double {Joint. First one and then the other of the

branches which form the node pass through P, and when P is

ultimately on the locus of the node the two positions of the

curve in which a branch passes through P ultimately coincide.

We can now generalize this idea. When fixed values are

assigned to x and y the equation <p(x, yy c) = 0 may be regarded

as giving the several values of c, corresponding to the several

members of the family which pass through a specified point.

If this equation be of the nth degree in c, there will be n real

or imaginary solutions and therefore n members of the family

each passing through this point.

When successive values of c give a locus of multiple points

of the rth order for the family yf
c) = 0 and the chosen

point (x, y) happens to lie upon this locus, r of these members

will coincide, and therefore the equation <j>(x, y}
c)= 0 will

give for such a point r equal values of c.

Hence it may be expected that the equation AC0= O will

contain, besides the true envJope solution, the loci of any

nodes, cusps or conjugate points which the members of the

family may possess.

366.

The more advanced student is referred for further

information to Papers by Cayley, Messenger of Mathematics,

•

vols* II. and XII.; Henrici, vol. II., Proc. Loncl. Math. Hoc.

;

and M. J. M. Hill, vol. XIX., Proc. Lond. Math. Hoc.

;

where it

has been shown that the c-discriminant in general contains the
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envelope locus as a- factor once, the node locus twice, and the

cusp locus thrice.

Ex. 1. <y + c)2 =.»3.

Here differentiating with regard to c

,
(?/ + CY + 2c(y + c)= 0,

giving y+0= 0, (i.)

or y+ 3c=0 (ii.)

Substituting from (i.) in the curve we get

.r=0 (iv.)

Substituting from (ii.) we get (v*)

Of these (iv.) is a cusp locus

and (v.) is a true envelope &r— -4^/.

This is exhibited in the accompanying figure.

Ex. 2. It may happen accidentally that the node or cusp locus is the

true envelope locus.

Thus in the family of semicubical parabolas

ai/
2=(j-cf

Fig. 70.

the ^-discriminant is y=*0 or the tf-axis, and as this line touches each mem-

ber of the family it may be regarded as a true envelope. The cusps are

now arranged as shown in Fig. 70.
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Ex. 3. c(y+c)2=#%r+ 1).

Here there is a node or conjugate point at (0, - a) according as c is positive

or negative.

Differentiating we have

(y+<0(y+3c)=o.

Eliminating c we have the results

x\x+ 1) = 0,

or -
-jct

=*%»+!)•

Of these ^=0 is the node locus for the portion of they-axis below the

origin, and thd conjugate point locus for the portion above the origin.

The line x+l — 0 is a true envelope solution, as also the cubic

4//
3
-f 27ar(.r 4-

1 )#= 0.

Ex. 4. Examine the cases of
%

(i«) 0/+ c)*=^(ar+ 1),

(ii.) y=c(x+cy,

(iii.) y
2—c{x-c)z.

367. It may happen that the consecutive members of the

family <f>(x , y, c)= 0 do not all intersect in real points. In this

case the curve Ae(p
= 0

does not touch all the members of the family at real points.

Ex. Let circles be described having for their diameters the double

ordinates of the parabola y~—Aax. Find their envelope.

If 2c be the double ordinate, the typical equation of such a circle is

or c4-8ac2(x+2a)+l6a2(x2+y2)=0, (1)

and the envelope Is (x+ 2a)?—x2
4-y

2

or v2= 4a(x+a\ (2)

i.e.j an equal parabola whose focus i? it the vertex of the original curve.

To find where the circle (1) touches the envelope solve for x between

(1 ) and (2). We obtain c
2=

4

a{x + 2a)

=y2+ 4a2
,

%

which gives an imaginary ordinate for the point of contact if c<2a ; i.e.,

if thfe centre of the circle lies between the focus and the vertex of the

original parabola. The student will be able to illustrate this result by a

figure.
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368. Case of Two Parameters.

Next, suppose the typical equation of the family of curves to

involve two parameters a, ft connected by a given equation.

Then two courses are open to us. We may eliminate one of

the parameters by means of the connecting equation and thus

reduce the problem to that solved in Art. 361, or, as is

frequently better from considerations of symmetry, consider

one of the parameters capable of independent variation and
the other dependent upon it We then proceed as follows.

Let (f)(x , y , a, yS) = 0 (1)

be the typical equation of the curves whose envelope is to be

investigated, and oII
•

the relation connecting a and
ft.

Then, supposing a the independent parameter, we have

•

da c)p da
‘ ••(3)

where ©II+
CO*

Q
..(4)

We thus have four equations and three quantities to eliminate,

viz., a,
*ft,

C

^. The result of elimination is the equation of the

envelope.

The parameters a, ft,
connected by the relation /(a, /3)= 0,

may be regarded as the co-ordinates of a parametric point

which lies on the curve f(x, y)— 0.

369. Indeterminate Multipliers.

The equations (3) and (4) may be written

dt'
il,+:

o/i
d!i = f> <Art' 158)'

The result of eliminating*^, df

3

between these equations is

30 30
3a _ 3/5'

da



ENVELOPES. 301

Call each of these ratios X. We then have

2-4 <»

%-*% <e
>.

This quantity X is called an “ Indeterminate Multiplier”

It remains to eliminate a, /3, and X between equations (1 ),

(2), (5), and (G).

This method is peculiarly adapted to the case in which

• V, «, /3) = 0i (*, y, «, /?)-«!= 0,

and /(a, /5) -,/j (a, /3)
- = 0,

where 0X
and/j arc homogeneous ia a and

ft,
and of the p

th

and 5
th degrees respectively, a

1
and «2

being absolute constants.

Multiply equation (*5) by a and (G) by /3, and add. Then by

Euler's Theorem

so that in such cases X is easily found.

Ex. Find the envelope of ^+*^
= 1, where a and b are connected by the

relation dr 4-lr— c
a
,

e being an absolute constant

;

°‘e., the envelope of a line of constcmt length

which slides with its extremities upon two fixed rods at right angles to each

other.

Here
x
'da+’/,dl>^0,

a1 lr

ada+bdb— 0
,

and therefore = \a,
a~

Multiplying by a and b respectively, and adding,

-- f=A(«
2 -

u 0

or l = Ac2.

Hence a*=c2x
II

and since cr 4-&'J—

c

2

we have (c2#)^ 4- (c2y)^= c2
,

or x^+y^—S.
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Examples,

1.

Find the envelopes of the line

gander the following conditions :

—

( 1 ) «+ £=

(2) atl+bn=kn,

(3) ambn= km+n
,

Jc being a constant in each case.

2. Find the envelopes of the systems of coaxial ellipses whose semiaxes

<i and b are connected by the equations

(1) a+ b=k,

(2) *Jb~iJ1C)

(3) atn+ hm~ km
,

(4) <tb= k\ '

k being a constant in each case.

3. Fmd the envelopes of the parabolas which touch the co-ordinate axes

and are such that the distances (a, /3)from the origin to the points of con-

tact are connected by the relations

(1) «.+/?=£,

(2) +

(3)

k being a constant in each case.

370. Case of Three Parameters connected by Two Equations.

Next, suppose the equation of a curve to contain three para-

meters connected by ttvo equations.

Let the equation of the curve be

<P(*t y> <*, y)=o, 0)
and let /a(a, fr y) = 0,-j (2)

/s(«. ft y) = 0J (3)

be the two connecting equations. Then we have

w
<•)

0 (6)
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The result of eliminating da
, dp, dy between these three equa-

tions is d<f> d<j>
!

da
9

dp' dy

¥1 & 3/i _ n m
3a* 3/3’ 3y

(7)>

5/2 3/2 l
\f-i

\
.

3a’ 3/3’ 3y !

If a,
ft, y be eliminated between the four equations (1), (2),

(3) and (7), the result will be the equation of the envelope.

It is to be Rioted that the same determinant would arise from

the elimination of the “ indeterminate multipliers ” and X2

from the equations •

'te+
X
'da

+X
*da-°' (8)

2j8
fXl

ct^
+H^ =0, •'•••<*>

?4
+x‘|+x%=°- <"»

and it is often advantageous to use these latter equations in

place of (4), (5), (6), involving da, dft, dy.

The result of eliminating a, /3, y, Xx , X2
between the six

equations (1), (2), (3), (8), (9), (10) will then be the equation to

the envelope.

371. The general investigation of the envelope of a curve

whose equation contains r parameters connected by r—

1

equations proceeds in exactly the same way, and is the result

of the elimination of the r parameters and r— 1 indeterminate

multipliers between 2r equations.

372. Converse Problem. ’ Given the Family and the Envelope

to find the relation between tlvj Parameters.

Suppose we are given the equatio$ of a curve

<p(x, y, a, P)= 0 (1)

containing two parameters. Suppose also the envelope given,

viz., F(x
, y)= 0 .(2)

Required the relation between a and p.

Eliminate y between (1) and (2). We obtain an equation of

the form f(x

,

a, ft) = 0, (3)
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giving the abscissa of the point of contact of the curve with its

envelope. Since the curve touches its envelope, equation (3)

must also bo true for a contiguous value of x
,
viz., x+Sx (unless

the tangent at the point of contact be parallel to the axis of y t

e in which case we could have eliminated x between (1) and (2)

and proceeded in the same way with y ). Hence

f(x> a, &) = 0/1 (4)

f(x+ox, a
, &) = 0.J (5)

The latter may be expanded in powers of Sx, when it becomes

f(x, a, 6)+^^+... = 0, (G)

and therefore in the limit

i=° «
If, then, x be eliminated between

f(x, a, P)= 0,

^f(x, «, /3)= 0,

we obtain the relation sought.

It will be observed that this is precisely the same process as

finding the envelope of

0(^,2/, a,/3)= 0,

considering a, /3 as the current co-ordinates and x, y as para-

meters connected by the relation

F(x,
2/)
= 0.

Ex Given that is the. envelope of —4-^= 1, find the necessary

relation between a and b.

We have
<*<•

,
<4'/_o

y
s

©1!+

therefore $HT.
c*

II

Hence
, a

II

and by addition l-Xc*.

This gives II b—c^y^j

and by squaring and adding

the relation required. (See Ex., Art. 369.)
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373. Evolutes considered as Envelopes.

The evolute of a curve has been defined as the locus of the

centre of curvature, and it has been shown (Art. 341) that the

centre of curvature is the ultimate point of intersection of two
consecutive normals. Hence the evolute is the envelope of the #

normals to a curve. It is from this point of view that the

equation of the evolute of a given curve is in general most

easily obtained.

Ex. Tofind the evolute of the ellipse

<1'2 0/2

1.

The equation of the normal at the point whose eccentric angle is 0 is

ax by
j

» j - *'
T—a2 — b2 .

COS 0 Sill 0
(1)

We have to find the envelope of this line for different values *f the

parameter 0.

Differentiating with regard to 0,

or

Hence

Sill 0
COS^0

, , COS 0

8in30+
c°s9

0_,o
by ax

sin 0 _cos0_# 1

-Vby XTax Vrax)H+ (6j
,)!i

(2)

(3)

Substituting these values of sin0 and cos 0 in equation (1) we obtain,

after reduction (ax)%+ (fiy)^—(a2 — b2)^.

374. Pedal Curves as Envelopes.

It has already been pointed out (Art. 223) that if circles be

described on radii vectores of a given curve as diameters they

all touch the first positive pedu of the curve with regard to

the origin. It is obvious, therefore, that the problem of finding

the first positive pedal of a given curve is identical with that

of finding the envelope of circles described on the radii vectors

as diameters.

Again, the first negative pedal is the envelope of a straight

line drawn through anypoint of tlte curve and at right angles

to the radius vector to the point.

E.D.C. tt
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Ex. 1. Find thefirst positive pedal of the circle r=2a cos 6 with regard to

the origin.

Let d
y
a be the polar co-ordinates of any point on the circle, then

d—2a cos a.

Again, the equation of a circle on the radius vector d for diameter is

r=c?cos(0-a), (1)

or r= 2a cos a cos(6 - a) (2)

Here a is the parameter.

Differentiating with regard to a,

- sin a cos( 6 - a)+ cos a sin(0 - a)= 0,

whence f sin(0-2a)=O,

or “=2- (3)

Substituting this value of a in equation (2)

Qr=2a cos2->
2

or r=a(l + cos 0),

the equation of a cardioide.

Ex. 2. Find the equation of the first negative pedal of the cardioide

r=a(l+cos 6)

with regard to the origin.

Here we have to find the envelope of the line

^•cos a+y sin a— d,

where d
,
a are tin* polar co-ordinates of any point on the cardioide ; i.e.,

where d—

a

( 1 -f cos a).

The equation of the line is therefore

x cos a+y sin a= a( 1 + cos a),

or {x — a)cos a+ ?/ sin a

=

a
,

a line which, from its form, is easily seen to be a tangent to

(x — «)"+ if

—

£l
2
,

or r=2«cos0,

which is therefore its envelope.

375. Envelope of a Line regarded as a Negative Pedal.

If a straight line be in motion in any manner, suppose 0 to

be any arbitrary origin and OF a perpendicular on the moving

line. It is evident that the envelope of the moving line is the

fir§t negative pedal of the locus of F. *

As several curves have well-known first negative pedals, the

envelope may in this manner often be inferred.

The following results frequently recur and may be found

useful.
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Original Curve.

Straight line,

Circle,

rn= ancos nO,

Bernoulli’s Lemniscate,

Equiangular spiral,

r=a sin nO,

The Given Point.

any point not upon^

the line, J

any point within,

pole,

pole,

pole,

pole,

First Negative Pedal.

Parabola.

{

Ellipse with pole for

focus.

f
Hyperbola pole for fo-

\ cus.

Point.

Circle through pole.

Circle.

rl~ n— al~n

I -w
Rectangular hyperbola.

Equiangular spiral.

{

Epi-cycloid or hypo-

cycloid.

Circle, any point without,

Circle, any point upon it,

Cardioide [r=a(l ±cos 0)], pole,

Limagon [r=

a

+ b cos 0], pole,

Ex. 1. If a lamina have three straight lines traced upon it and isnToved

so that two of the straight lines pass through fixed points, find the envelope

of the third carried line.

Let S and S' be the fixed points, Ah, AC the lines fixed in the lamina

and passing through S and S', ST a perpendicular from S on the carried

line BC.

Let SY=r, YSX=$, SS'= \, and AB-e.

Then AS&^e-iW-B),
and * r=SBBinB=*(c-AS)tim B

=»[c- g~|Sin(.4+#+ 6 ~ 90)]sin B.
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This is of the form

CHAPTER XL

r=a+ ft cos(6-y)
where a, /?, y are constants and the locus of Y is a limagon with $ for

pole. Hence the envelope of any carried line BC is a circle.

Con. Thus if two of the sides of a polygon pass through fixed points, all

other sides, diagonals, or carried lines envelope circles or pass through

fixed points.

Ex. 2. If a lamina with a curve traced upon it he in motion in any

manner, to find the envelope of the instantaneous directions of motion of

all points upon the carried curve.

Let A
f
B be two of the points of the curve. Draw lines AO, BO at right

angles to the instantaneous directions of motion of A and B respectively.

Then 0 is the “instantaneous centre”; and if V be any other point of the

curve, BO is a normal to the path of V. Hence the envelope of all the

directions of motion at any instant is the first negative pedal of the given

curve with regard to the instantaneous centre.

EXAMPLES.

1. Find the envelope of the line y = mx - 2am - am3 for different

values of m
;

i.e., find the equation of the evolute of the parabola

y
1 — 4ax.

2. Show that the envelope of the family of curves

AX3 + 3BX2 + 3CA 4 D = 0,

where X is the arbitrary parameter and A
,
B

,
C> D are functions of

x and yy
is (BC - AD)1 = 4(BD - C 2)(AC - B1

).

3. Find the envelope of the line which joins the feet of the two

perpendiculars from any point of a circle upon a given pair of per-

pendicular diameters.

4. Show that the envelope of straight lines which join the ex-

tremities of a pair of conjugate diameters of an ellipse is a similar

ellipse.

5. Show that if PM, PN be perpendiculars from any point P of

the curve y — ma? upon the axes the envelope ofMN is

27y + 4war*= 0.

6. Find the envelope of circles described on the radii vectores of

an ellipse drawn from the centre as diameters.

*7. Show that the envelope of the family of curves

• A cos
n
0 + B sin

w0 = C,

where 6 is the arbitrary parameter and A, B, C are functions of x
2 _2_ 2

and is A2~H +&Ln= C*~n
.
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8. Show that the envelope of a circle whose centre lies on the

parabola y
1 = 4ax and which passes through its vertex is

2ay2, + x(x2 + y-) = 0.
*

9. Show that the envelope of a circle whose centre lies on the

parabola y
2 = 4ax and whose radius - the abscissa of the centre is

made up of the tangent at the vertex and a circle with centre at the

focus.

1 0. Two particles move along parallel straight lines,- the one with

uniform velocity and the other with the same initial velocity but

with uniform acceleration Show that the line joining them always

touches a fixed*hyperbola.

11. A series of circles is described having their centres on an

equilateral hyperbola and passing through its centre. Show that

the locus of their ultimate points of intersection is a lemniscate.

12. Find the envelope of the lines

;e(sin 8) - in- y(cos 0) ~ [Oxford,.1889. ]

13. Prove that the equation of the normal to the curve

x* + ?/3 — tfS

may be written in the form

y cos </> - x sin */> a cos 2</>.

Ilcnce show that the evolute of the curve is

(x + y)$ + (x-y)* = 2«t

14. Show that the envelope of the lines
m

x cos witt + y sin ma - a(cos na) u
,

where a is the arbitrary parameter, is

— n
rm - n - a"'

~

n
cos- 0.m — n

15. Circles are described having for diameters the radii vectores

from the origin to the curve - 3ax2
. Prove that their on •

velope is the inverse of a semicubical parabola. [Oxford, 1889.]

16. The tangent at any point P on a parabola meets the tangent

at the vertex in Q,
and the normal at P% meets the axis in B, find

the envelope of QR. [Oxford, 1868.]

17., Show that the radius of curvature of the envelope of the4ine

x cos a + y sin a - /(a)

is /(a) +/"(“)
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and that the centre of curvature is at the point

x = -/'(a)sin a - /"(a)cos aI

y = /'(a)cos a -/"(a)sin a
j

18. If 0 be the pole and P any point of the curve

r = a cos md,

and if with 0 for pole and P for vertex a similar curve be described,

the envelope of all such curves is

* i i vtO
r^ — a2cos

-

* ')

19. If 0 be the pole and P any point of the curve

r
m= amcos inO,

and if with 0 for pole and P for vertex a curve similar to

* rn — aMcos nO

be described, the envelope of all such curves is

7n”
- 7nn

rm+n= am+ ucos 0.
• m + n

20. If 0 be the pole and V the foot of the perpendicular from

O on any tangent to the curve

rm = a™cos inO,

and if with 0 for pole and Y for vertex a curve similar to

r

"

— a”cos 7i0

be described, the envelope of all such curves is

rp - ft
pcos v6, where p - ——* .m + n -f- 7ii7t

21. If a point on the circumference of a given circle be taken as

pole, and circles be described on radii vectores of the given circle as

diameters, the envelope of these circles is a cardioide.

22. Show that the envelope of all cardioides on radii vectores of

the circle r-a cos 0 for axes, and having their cusps at the pole, is

== a& cos £0.

23. Show that the envelope of all cardioides described on radii

vectores of the cardioide r = a{ 1 + cos0) for axes, and having their

cusps at the pole, is

0
rl = (2afi cos

$4. On radii vectores of r2" = a2” cos 2w0 as axes, curves similar to

it are described, the curves being all concentric. Show that the

envelope of all these is rn = ancos n$.
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25. A and B are two polar curves [r = aj\0) and r = 6^(0)], If

curves similar to A be similarly described upon radii of B as initial

lines, their envelope will be similar to that of curves similar to B
similarly described on radii vectores of A as initial lines.

26. A variable parabola is drawn having its vertex on a given

parabola, the two curves having the samo focus; prove that the’

envelope of its directrix is the curve

30 7r cos3- =

.+

referred to the common focus as pole
;
and trace this curve.

• [Oxford, 1890.]

27. Prove that the pedal equation of the envelope of the line

x cos 26 + y sin 20 = 2a cos 0,

is =

28. Prove that the'pedal equation of the envelope of the line

x cos inO 4- y sin mO = a cos nO,

is mrr2 - {in1 - ii
2
)p

2 + n2ar.

29. Two central radii vectores of a circle of radius a rotate from

coincidence m a given initial position with uniform angular velocities

w and m. Show that the pedal equation of the envelope of a line

joining their extremities is

(w + ft>')V“ - - 4oko j/
1 + (ft) —

30. The envelope of polars with respect to the circle,

x1 + y
1 -- 2ax

of points which lie on the circle

x1 + y
2 = 2bx

is
{
(a ~ b)x Ir

{
(x - a )- 4- y

1
}

.

31. A square slides with two of its adjacent sides passing through

fixed points. Show that its remaining sides touch a pair of fixed

circles, one diagonal passes through a fixed point, and that the

envelope of the other is a circle.

32. An equilateral triangle moves so that two of its sides pass

through two fixed points. Prove that the envelope of the third side

is a circle. *

33. Prove that tho envelope of the circles obtained by varying the

arbitrary parameter a in the equation *

<.2
(2,

- af + (ex - a3
)
2 = (a2 + c2)

1

consists of a straight line and a circle.
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34. Two points are taken on an ellipse on the same side of the

major axis and such that the sum of their abscissae is equal to the

somi-major axis. Show that the line joining them envelopes a para-

bola which goes through the extremities of the minor axis and whose

latus rectum is equal to that of the ellipse.

35. Given the centre and directrices of an ellipse, show that the

envelope of the normals at the ends of the latera recta is

27

y

4 ± 256cas3 = 0.

36. Prove that the envelope of a circle which passes through a

fixed point F and subtends a constant angle at another fixed point F'

is a lima^on.

37. Find the envelope of a parabola of which the directrix and

one point are given.

38. Show that the envelope of the common chords of the ellipse

x-/ar + y
2jb

%1 — 1

and its' circles of curvature is the curve

?/\H /*_2A3 = 2
\a l/J \a b) ^ [Math. Tkipos, 1884.]

39. Find the condition between a and b that the envelope of the

line ? + »-l
a b

may be the curve xpy
v = kp+

'J
.

40. S is a fixed point, and with any point P of a curve for centre

and with radius PS+ k a circle is described. Show that the envelopes

for different values of k consist of two sets of parallel curves, one set

being circles
;
and find what the original curve must be that both

sets may be circles.

41. Kays emanate from a luminous point 0 and are reflected at a

plane curve. OF is the perpendicular from 0 on the tangent at any

point P
9
and OF is produced to a point Qy such that F<2 = OF.

Show that the caustic curve is the evolute of the locus of Q. Show

that the caustic curve may also be regarded as the evolute of the

envelope of a circle whose centre is P and radius OP.

[If a ray of light in the plane of a given bright curve be incident upon the

curve, the reflected ray and the incident ray make equal angles with the normal

to the curve at the point of incidence, and the reflected ray lies in the plane of

the curve. If a given system of rays be incident upon the curvo, the envelope

of the reflected rays is called the causticby reflection.]
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42. Parallel rays are incident on a bright semicircular wire (radius

a) and in its plane. Show that the caustic curve is the epicycloid

formed by a point attached to a circle of radius ® rolling upon the

circumference of a circle of radius -•

2

43. Rays emanate from a point on the circumference of a reflecting

circular arc. Show that the caustic after reflection is a cardioide.

44.

Show that if rays emanate from the pole of an equiangular

spiral and are reflected by the curve the caustic is a similar equi-

angular spiral.

45.

Rays of light parallel to the y-axis fall upon the reflecting

curve y =/(#). Show that the equation of the reflected ray is

(

Y

- y)2p + (1 - p-)(A - x) - 0

where p -/'(#). Also that the length of the reflected ray between

the point of reflection and the caustic is one quarter of the chord of

curvature parallel to the y axis.

46.

If rays of light emanating from the pole fall upon a reflecting

curve, show that the length
(
l

)

of the reflected ray is given by

47. A straight line meets one of a system of confocal conics in

P
y Qy and US is the line joining the feet of the other two normals

drawn from the point of intersection of the normals at P and Q.

Prove that the envelope of RS is a parabola touching the axes.

[Math. Tripos, 1884.]

48. Show that the tangents to a system of conics inscribed in a

given quadrilateral, at the points where a fixed straight line meets

them, envelope a curve of the third class touching the given line and

the sides of the given quadrilateral. [Math. Tripos, 1885.]

49.

Show that the vanishing of the c-discriminant of the eliminant

ofp from the equations xp1 - 2yn .»* a = 0
j

and cp* - xp:
+ 1

= 0
j

gives exactly the same locus as the vanishing of the ^-discriminant of

the first equation. Show that this is nut a true envelope but a cusp

locus. [Math. Tripos, 1878.]

50.

Find the condition that every curve of the familyf(xy y, <?) = 0

may have a double point, i.e. that there may be a node locus.

[Prof. M. J. M. Hill.]



CHAPTER XIT.

CURVE TRACING.

376. Nature of the Problem. Cartesian Equations.

If in the Cartesian equation of any algebraic curve, various

values of as be assigned, we obtain a number of equations whose

roots give the corresponding values of the ordinates. The real

roots qf these equations can always be either found exactly or

approximated closely to by methods explained in the Theory

of Equations. We can by this means, laborious though it will

in most cases be, find as many points as we like which satisfy

the given equation of the curve
;
and by joining these points

by a curved line drawn freely through them we can form a

fairly good idea as to its shape. The experience, however,

which we have gained in previous chapters will in general

obviate any necessity of resort to the usually tedious process

of approximating to the roots of equations of high degree
;
and

we propose to give a list of suggestions for guidance in curve

tracing which in most cases will enable us to form, without

much difficulty, a sufficiently exact notion of the character of

the curve represented by -any specified equation.

377. Order of Procedure.

1. A glance will suffice to detect symmetry in a curve.

(a) If no odd powers of y occur, the curve is symmetrical with

respect to the axis of x. Similarly for symmetry about

the axis of y.

(b) If all the powers of both x and y which occur be even, the

curve is. symmetrical about both axes, as, for instance,

in the case of the ellipse
a2+^2

:== ^*

314
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(c) Again, if on changing the signs of x and y the equation

of the curve remain unchanged, there is symmetry in

opposite quadrants, as in the case of the hyperbola

xy=k?. The origin is then said to be a centre of the

curve.

(d) If the equation remain unchanged when x and y are inter-

changed there is symmetry about the line y=x.

If the curve be not symmetrical with regard to either axis,

consider whether any obvious transformation of co-ordinates

could make it so.
%

2. Notice whether the curve passes through the origin
;
also

the points where it crosses the co-ordinate axes; or, in fact,

any points whose co-ordinates presbnt themselves as obviously

satisfying the equation to the curve.

3. What linear asymptotes are there ? First find those

parallel to the co-ordinate .axes
;

next, the oblique ones (Art.

237). These results point out in what directions the curve

extends to infinity.

Find also on which side of each asymptote the curve lies

(Art. 200).

If there be a parabolic branch it is useful to obtain a para-

bolic asymptote and to ascertain on which side of this parabola

the curve lies (Art. 203).

4. If the curve pass through the origin, equate to zero the

terms of lowest degree. These terms will give the tangent or

tangents at the origin (Art. 291), and thus tell the direction in

which the curve passes through the origin. A more complete

method of finding the shape of the curve near to and at a great

distance from the origin is to follow in Art. 382.

5. If there be a node
, cusp, or conjugate point at the origin,

or a multiple point of higher order than the second, take note

of the fact. If there be a cusp, test its species (Art. 295).

6. Find what other multiple points the curve has (Art. 294),

and ascertain the position and character of each.
%

#
7 . Find ^ ;

and for what points it vanishes or becomes

infinite. These results will indicate the points at which the

tangent is parallel or perpendicular to the axis of x. The
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direction of the tangent at other points may also be ascertained

if desirable.

8. Find, if convenient, the points of inflexion,

9. A straight line will cut a curve of the wth degree in n
points real or imaginary, and imaginary intersections occur in

pairs. These facts are often useful in detecting a false notion

of the shape of a curve.

10. If we can solve the equation for one of the variables, say

y, in terms of the other, x, it will be frequently found that

radicals occur in the solution, and that the range of admissible

values of x which give real values for y is thereby limited.

The existence of loops upon a curve is frequently detected thus.

11. It sometimes happens that the equation is much simpli-

fied upon reduction to the polar form. This is especially the

case when the origin is a multiple point on the curve.

(a) y-l,x

Straight Line

Inflexion atO

V- JL V ,

(b) y-

O X

-x2
(c) y-

o x

-x3 Id) y=

O X

-X*
Parabola Cubical Parabola UndulationatO

Inflexion at 0

c_V
(!) r *
Parabola

<g) y--x*
PairofSt.Lims

(h) y^x3
Semicnbical Parabola

Cusp ato

(0 y*-x4

. Two Parabolas
(j) f- xs
Cusp at 0

00 y£=x
Cubital Parabola
Inflexion at 0

Fig. 72.

(u x*
Scmicubical Parabola

Cusp at O

378. It is not necessary of course in every case to take* all

the steps indicated above, or to keep to the order laid down,

but the student is advised in any curve he may attempt to



CURVE TRACING. 317

trace to note down the result of each investigation he may
make. For instance, h# should remark, the absence just as

much as the existence of symmetry, asymptotes, or singular

points, and the total information gained will generally be

sufficient to give a tolerably good diagram of the curve.

379. It will be useful to bo able to draw at once a graph of

any of the cases which come under the head

xP= y<i.

Accordingly the student should carefully consider the figures

of diagram and verify the drawing in each case.

380. We add a few examples to illustrate the points enum-

erated.

I. To trace the curve y— (x— 1 - W

2X^- 3).

(a) This curve is not symmetrical aboivt either axis
; but if the origin

be transferred to the point (2, 0) the equation becomes •

y=x{o?- 1),

showing symmetry in opposite quadrants when referred to the new axes,

and that the tangent at the new origin is inclined at an angle 135° to the

axis of x.
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(j3) Recurring to the original equation,

If y=0, #=1, 2. or 3

;

If x—0, y— -6
;

If x— oo
, y= oo;

If X— -00,
.

y=-co.
\JHien x is >3 // is positive,

x<3 but >2 y is negative,

x<2 but >1 y is positive,

.r<l y is negative.

(y) The curve does not go through the origin, and, although extending

to infinity, it lias no rectilineal asymptote.

(5) Since y^aP-GaP+llx-Q

we have — 3#2— 12#+ 11,
ax

whi.ch vanishes when .r=2± ]
V*

(e) Also
c

\
*^=6(.r — 2), which shows that there is a point of inflexion at

tlx1

the point where x—2.

The shape of the curve is therefore tliat shown in Fig. 73.

Fig. 74.

II. To trace the curve y— ±^--
d*

Case 1 . Suppose a>b (Fig. 74).

(a) The curve is symmetrical with regard to the axis of x.
'

(j3) While x<b
, y is imaginary,

and y is real for all values of x from b to oo
,
and the curve meets the axis

of x when x=a and when x=b.

=0 when x= a, and —cc when x= h, so tliat the curve touches

the axis x at the point (<*, 0), and cuts it at right angles at (b, 0).

(8) There is no asymptote ; but, when x=ao, y and ^ are both oo in

the limit, the curve ultimately taking the shape of »

A
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Case 2. Next consider a<b (Fig. 75).

(a!) There is in this case also symmetry about the axis of r.

(ft) The equation to the curve is satisfied by the point (a, 0), but by no
other point in its vicinity, for if x be <b

y y is imaginary except when
jc=a. The point (a, 0) is therefore a conjugate point.

(y') Moreover oo when x=b, and the curve cuts the axis of x at

right angles at this point.

Fig. 75.

(S') Also, when x—co, ^= 00
;
so the curve in departing from (6,0)

<the point B in Fig. 75) must bend towauls the positive direction of the

axis of x
y
and, finally, agriin becomes infinite, showing that there must

ax

be a point of inflexion at some point C between B and 00 . Tts exact

position is of course given by the equation

ax*

The shapes of the curves in the two cases are given in Figs. 74 and 76

respectively.

Examples.

1. Trace the curve • y— r\x - 1 ),

showing that its tangent is parall
1

t? the axis of x at the origin and at

the point x=%.
2. Trace the curve aty - 6)

+

jp— 0.

3. Trace the curve (x-af + (y - 6)
3=0.

4. Trace the curve ay2= (x - a)(x - b)(x - c), ,

where a, 6, c are in descending order of magnitude, and examine the cases

• (1) a—b.

(2) 6=c.

(3) a=6=c.
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III. To trace the curve +®
?

t* — a*

a being positive

.

(a) There is no symmetry about either axis and the curve does not pass

through the origin.

((3) The curve cuts the axis of y at the point (0, - a) and the axis of x
at the point given by the real root of

.v
3+ar2+ a3= 0.

(It is clear that two roots of this equation are imaginary, for the sum of

the squares of the reciprocals of its roots is negative.) Also, the real root

is obviously negative and numerically greater than a.

(y) When x is >a, y is positive.

' When x lies between a and — a, y is negative.

When x is <-a, y is positive until x passes the negative root above

referred to, and then is negative afterwards.

(5) The asymptotes parallel to the axes are r—±a. To find the oblique

asymptote we have

1 +?+-,

or y*#+a+ +.
x
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Hence y—x+a is the oblique asymptote, and, if x be positive, the ordinate

of the curve is obviously greater than that of the asymptote, and the curve

1 ies above the oblique asymptote. If x be negative, the curve lies below it*

, v dy x(x?— 3a?x - 4a*)
^ dx~~

9

which gives ^-=0, when x=0 or when x* -3a2x- 4a?=0, which clearly •
Cm

has a positive root lying between #=2a and x= 3a, and which can be

shown to have only this one real root. Also, ^=ao only when x— ±o.
dx

(() A point of inflexion lies between #=-5a and #=-6a (Ex. 13,

p. 248).

The shape is therefore that given in Fig. 76.

IV. To trace tho curve y^+ Zofiy+x7 ~Q.

(a) The curve is not symmetrical about either axis and there are no

asymptotes.

(ft) The curve passes through the origin, but cuts neither axiB again,

(y) There is a cusp at the origin, the equation of the tangent being

y^-0.

Proceeding according to Art. 295 ’he quadratic for P is

p*+2rs ix7=of

an equation whose roots are real if x be very small, positive or negative

;

for the criterion for real roots is that x°-x7 should be >0. This condition

rs fulfilled until x is >1, when P or y becomes imaginary.

Moreover, the product of the loots —x1 and is positive or negative

according as x is positive or negative. There is therefore a double cusp

At the origin, and on the positive side of the axis of y it is of the second

species, while on the negative side it is of the first species. The point is

therefore a point of oscul-infiexion (Fig. 50).

K.D.C. X
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(S)

so that oo if x=l. Also, one value of is zero when
(Lx (Lx 49

The shape of the curve is now readily seen to be that shown in .Fig. 77.

381. The following curve illustrates a particular artifice

which may be occasionally employed, namely to expreas the

ordinate of the curve as the sum or difference of the ordinates

of two known or easily traceable curves.

Fig. 78.

V. To trace (tf
2
+,y

2 - 3ax)1— 4ax\2a — x).

Here y
2= 2ax - or± 2JaxsTZax- x2+ax

— (\^2ax - x2± aSax)*

;

therefore y= ±J2ax - or±Jax,

or y=±y1 ±y.2,

where y

\

and y» are corresponding ordinates of the circle x2+y2=2ax and

of the parabola y~— ax. Hence the ordinate of the curve is the sum or

difference of the corresponding ordinates of these curves. The circle and

the parabola are shown by dotted lines ii\ the accompanying figure, and

the resultant curve by the continuous line.

Examples.

1. Trace the curve (x+y+ 1)
2= ( 1 - x)\

showing that there is a cusj^of the first species at (1, -2) ;
also that all

chdrds parallel to the axis of y are bisected by the line

x+y+ 1=0.

2. Trace the curve r=asec 0±acos 0,

thfe : radius vector being the sum or difference of the radii vectores of a

straight line and a circle.
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382. Newton’s Diagram of Squares.

When a curve whose equation is algebraic and rational passes

through the origin, it is frequently desirable to ascertain the

shape of the curve in the immediate neighbourhood of the

origin more accurately than can be predicted from a mere*

knowledge of the direction of the tangents, and also to form

some idea of the limiting form of the curve at a great distance

from the origin.

The following is a graphical method of determining what

terms of an equation are to be retained or rejected in sugh

cases :— 1

Let Axpyq
f
Bxry* be any two terms of the equation of the

curve
;
and let us suppose them to be such that they are of the

same order of magnitude. Take a pair of co-ordinate axes and

mark down the positions of the points (p, q) (r, a), which we
shall call P and R respectively. Then, since xpyq and x\y* are

of the same order of magnitude, xp ~ r and y*~ q are also of the
*-q

same order, and therefore the order of x is that of yp
~ r

.

s— oNow —* =tan0, where 0 is the angle which the line PRr—p ”

makes with OX, So that the order of x is that of y~ taa0
y
and

therefore the order of the term Axpyq is that of y^-p^o. Now

g—p-tan 0=the intercept OA made by the line PR upon 0T
f

so that the order of the terms Axpyq and Bxry* is that of y
0A

and is measured by the intercept OA,
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Consider next any other term Cxmy
n in the equation. Let

its graphical point (m, n) be denoted by M in the figure. Then

the order of this term is that of

yn-m tan0 or yOB,

r
the line MB being drawn parallel to IIP, cutting off the inter-

cept OB on the axis of y . OB therefore graphically marks the

order of this term, which may therefore be rejected in tracing

near the origin in comparison with the terms denoted by the

points P and R if OB be greater than OA
;
and in tracing the

curve at a great distance from the origin it may be rejected if

OB be less than OA. Thus if all the terms of the equation be

represented graphically by the series of points P, Q, R, S ... in

the manner above described, and if when any two, say P and

R, are chosen all the other points lie or. the side of the line

PR remote from the origin, they may all be rejected in tracing

the portion of the curve in the immediate proximity of the

origin
;
but if they all lie on the origin side of the line PR

they may all be rejected in tracing the curve at an infinite

distance from the origin.

Ex. If the equation bo

4- 2.r// 4- 3.rb/ 4- .r
2
y2+y*— 0,

the points A, B
,
C, D

,
E represent the 1st, 2nd, etc., terms respectively,

and a glance at the diagram will show that the

second and third

and the second and fifth /

ar£ paira which may be taken together in tracing near the origin, whilst

the first and third 1

and the first and fifth /

are pairs which may be taken together in approximating to the form of

the curve at an infinite distance from the origin.
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383. The above method is a modification of the one adopted

in such cases by Newton, and is known as Newton’s Parallelo-

gram. A further slight variation on the same method is due

to De Gua, and is known as De Gua’s Analytical Triangle.

[De Gua’s Usage de VAnalyse de Descartes
,
Paris, 1740.]

VI. To trace afi+y6 - balx-y = 0.

(a) Newton’s diagram shows at once that near the origin the first and

third of these terms, or the second and third, may be taken together,

Fig. 81.

whilst at a great distance from the origin the first and second may be

taken together. This indicates that at the origin the curve assumes the

parabolic forms y
2= ±axj5

f

and that at infinity it approximates to the straight line .r+y=0, which is

obviously the only asymptote.

(ft) Moreover, the equation may be written

y=-*(l -&**£)*

y— -#=a very large quantity.when in the limit
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Hence again y— -x is an asymptote, but we gain the additional informa-

tion that if x be negative and very large the ordinate of the curve is

greater than the ordinate of the asymptote.

(y) Since when the signs of x and y are both changed the equation

remains of the same form there is symmetry in opposite quadrants.

'

(«) Since
dx yk — alx-

we have ^= 0
ax

at the points where the curve is intersected by the cubical parabola

2a2y=a^ (which is easily traced), and by the axis of y ;
and

dl

where the curve is cut by either of the parabolas y
2— ±ax. The form of

the equation is therefore that shown in Fig. 81.

Examples.

1. Trace x5 +y5— 5ax2
y
2
,

showing that at the origin there are two cusps of the first species, an

asymptote x+y= a, two infinite branches below the asymptote, and a loop

in the first quadrant.

2. Show that the curve y
G - a2x2

y
2+ =

0

consists of four equal loops, one in each of the four quadrants and lying

entirely within the circle r— a.

384. Polar Equations. Order of Procedure.

In tracing a curve from its polar equation it is advisable to

follow some such routine as the following :

—

1. If possible form a table of corresponding values of r and

6 which satisfy the equation of the curve. Consider both pos-

itive and negative values of 6.

2. Examine whether there be .symmetry. If a change of

sign of 6 leaves the equation unaltered the curVe is symmetri-

cal about the initial line. If only even powers of r occur the

curve is symmetrical about the origin and the pole is a “centre.”

3. Obtain the value of tan
<f>,

Art. 202. This will indicate

the direction of the tangent at any point. The length of the

pofar subtangent is often useful, Art. 203.

4 Examine whether any values of 6 exist which give an

infinite value of r. If so, find whether the curve has asymp-
totes in such directions (Art. 265) and find their equations.
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Examine whether there be an asymptotic circle (Art. 270).

6. Find the positions of the points ofinflexion (Art. 283).

7. It will frequently be obvious from the equation of the

curve that the values of r or 0 are confined between certain

limits. If such exist they should be ascertained. •

E.g.y if r=a sin nd, it is clear that r must lie in magnitude between the

limits 0 and a, and the curve lie wholly within the circle r=a.

8. It may be useful to know too whether the curve is convex

or concave to the pole at certain points. This can be tested by

Art. 282. •

385. Curves of the Class r=asinnd.

These curves were called RhodoAeae by the Abb6 Grandi

from a fancied resemblance to rose-petals*

VII. To trace r=a nin 5$.

(a) We have the following table of corresponding values of r anti 0 :

—

Values of 0 0 Intermed.

]

Values.

7

r

10

|
Intermed.

j

Values.

1

i 27T

10

|

Intermed.

j

Values.

37

r

10 Intermed.

V

alues.
47

r

10

!

Intermed.

1

Values.

Corresponding
Values of r

0
Pos.

and
Incr.

a
IJOH,

and
Deer.

0 Neg- -a Neg.

_ _ j

0 Pos.

Values of 0
f)7T

10

Gtt

10

7tt

10

Sir
j

---
etc.

Corresponding
Values of r

a Pos. 0 Neg. — a Neg.
1

0 etc.

(ft) r is never greater than a, and there is no asymptote.

(y) tan </>=£ t^n 50, and tl*erefore vanishes whenever r vanishes and

= oo whenever r— ±a. The curve therefore consists of a series of similar

loops as shown in Fig. 82, all being a ranged symmetrically about the

origin and lying entirely within a circle whose centre is at the pole and

radius a.

386. Any other curve of the class '
^

r= a sin 7i0

may*be traced in a similar manner.

* Flores Geometric

i

and Phil. Trans, for 1723, referred to by D. F. Gregory,

Examples, p. 186.
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3

We.annex a figure of the curve

r= a sin 60 (fig. 83).

It will be noticed for this class of curves that if n be odd there

are n loops
,
whilst if n be even there are 2n loops. This will

be easily seen from the order ofdescription of the loops, which

we have denoted by the numerals 1, 2, 3 in the figures^

387. Curves of the class

r sin ri0= a.
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belong to a group of curves known as Cotes’s Spirals and are

inverse to the above species. Their forms are therefore obvious,

•going to oo along an asymptote whenever the radius of the

companion curve r=

a

sin nO vanishes, and touching r=a sin n&

Fig. 84.

at the extremity of each loop. Since the polar subtangents

corresponding to the values of 0 for which r becomes infinite

(viz. nO= Kir) are given t>y

dO _ _ ji

du n cos KTT

the asymptotes are not radial but can at once be drawn. We
give in illustration a tracing of the curves «

r=a sin 40,

a=r sin 40,

with the asymptotes of the latter in one figure (Fig. 84).
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388. Class rn=an cosn0.

The class of curves of which

rn ==ancos nd
is the type, embraces, as has been previously noticed, several

important and well known curves. For instance, we get

Bernoulli's lemniscate (n= 2), the circle (?t=l), the cardioide

(n= l), the parabola (n= — £), the straight line (n= — 1), the

rectangular hyperbola (

n

= — 2).

VIII. To trace r2 —

a

acos20 (Bernoulli’s Lemniscate).

(a) Negative values of cos 20 give imaginary values of r. Hence the

only real portions of the curve lie in the two quadranti bounded by

0 = and 0= + 71
", and by and &=—•

4 4 4 4

( ,3) r=0 when 0 -+™ or or
4 4 4

and = ±a when 0=0 or rr.

Fig. 85.

(y) Since the only power of r occurring is even, the curve is symmetrical

about the origin. Again, since the equation is unaltered by writing — 0

for 0,
the curve is obviously symmetrical about the initial line.

Also, r increases from 0= — to 0 and decreases again from 0=0 to
^

and is nowhere infinite or in fact greater than a .

The cur^fr therefore consists of two similar loops as shown in Fig. 85.

Other curves of this species may be treated in a similar manner. It

will be easily seen that if n be fractional
(J— the curve will have p

portions arranged symmetrically about the origin.

For example, in the curve r'° — a s
cos * 0

we have the following scheme of values for r and 0 :

—

0 0
b7T Hbr

6

I 07r

"C
20tt

6

257

r

6

30tt

6
etc.

r a 0 -a 0 a 0 —a
|

etc.
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whence we obtain a figure with three equal loops, the whole lying within

a circle whose radius is a and centre at the origin (Fig. 86).

Examples.

1. Trace the curves r=

a

cos 20, r cos 20= «,

r—a cos 3 0, r=

a

cos 40.

2. Trace r3 =a3cos30, r3cos30=os
,

r^-a^coH J0, r^cos£0=c/ !

\

r®= a^cos
.J 0, r^cos |0= a*.

3. Trace the curve ;/
2
(.r

2
-\-ct

1)= j’2(a2 — x2
). [I. C. S., 1885.]

Show that the abscissa corresponding to any given central radius vector is

equal to the corresponding radius vector in Bernoulli’s Lemniscate, and

hence that the curve consists of two loops passing through the origin and

resembling those of the Lemniscate.

IX. To trace ^
(a) By giving a set of values to 0 wt: have the following table :

—

Values of 0 in
3 .2

1 1 1 1

Circular Measure
oo 4 1

2 4
0

4 2

Values of r a
4a 3a 2a a a ? 0 _ a —a
ft 4 3

i

2 3 5 3

Values of 0 in

Circular Measure
3

4
-1 5

4

4

3

3

2
— 2 -3 — 4 -10

•

— 00

Values of r -?.a 00 5a 4a 3a 2a
3a
~2~

•

4a

3

10a
9~ a
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((J) Since we may write the equation

when 0 becomes very large, either positively or negatively, the form of

«the curve approximates to that of an asymptotic circle r=o, which it

approaches both from within and without.

(y) Art. 265 shows that r sin(0+ l)+a=O
is an asymptote to the curve. This line touches the asymptotic circle and

is shown by the dotted straight line in the figure.

(8) The points of inilexion (Art. 283) are given by the equation

0*J + 02+2=0,

an equation which lias one real root which lies between 0= -1 and

0= - 2. The curve is therefore that shown in Fig. 87.

Examples.

1. Trace r— aO2

0*+l*

showing that it lies entirely within the circle r=a, which is an asymptotic

circle ;
also, that there is a cusp of the first species at the origin.

Y == •

02-1
2. Trace

Show that there are two linear asymptotes and an asymptotic circle
; also

a cusp of the first species at the origin and a point of inflexion when 0*= 3.

EXAMPLES.

1. Show that the curve y
1 — ^

consists of two branches each passing through the origin and extend-
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ing to infinity, and that the whole curve is contained between two

asymptotes parallel to the axis of y.

2. Show that the curve y
2 =

X" “ Cl"

lias two infinite branches passing through the origin and lying

between the asymptotes x—±a
y
and that there are in addition

two other infinite branches resembling those of the hyperbola

x1 - y
2 = 4a2

.

3. Show that the curve ar { + y > = a:l

consists of oi^e infinite branch running to the asymptote x + y = 0 at

each end and cutting the axes at right angles at the points (a, 0),

(0, a) at which there arc points of inflexion.

4. Show that the curve x3 + y
3 = 3axy

i

consists of one infinite branch running to the asymptote x + y + a= 0

at each end and lying on the upper side of that line. Also, that the

axes of co-ordinates are tangents at the origin, and that there is

a loop in the first quadrant. This curve is called the Folium of

Descartes.

5. Trace the curves

(a) x3 + y
3 = a2x.

Q

3

)
x3 + y

3 = 2a#2
.

(y) ay2 x(a2 - x2
).

6. Show that the curve

ay2 — x2
y + as

3

has a cusp of the first species at the origin and an asymptote x + y = a

cutting the curve at Trace the curve.

7.

Trace the curves

(a) ay2, - 2axy + x3 — 0,

(f3) y
3
4- a*v

’

-r bx? «= 0,

a and b both being positive quantities.

8. Trace xy2 — 4a2(2a - x). (The Witch.)

9. Trace the curve y
2
(2a - x) = x3

. (Gissoid of Diodes.)
#

10.

Trace
* \x+ a/ # + 2a

and show that the oblique asymptote cuts the curve at an angle

tan" 18
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11. Trance 2a;(a^ + 2/
2
)
= a(2a32 + y

2
)

arid find by polars the co-ordinates of the points of inflexion.

1 2. Trace y(a2 + sc
2
)
= a2x,

Showing that there are points of contrary flexure where *=0 or

±a^/3, that the tangent is parallel to the axis of x where x=±a,
and that the axis of x is an asymptote.

13. Trace x2
y
2 = aHx2 — y

2
),

showing that the curve lies entirely between its asymptotes y= ±a,

and that its tangents at the origin are y — ±x,

14 . Trace the curve
(
x2 - a2

)(y
2 - b2

)
— a2#2

.

15. Trace x* = a2(x2 - y
2
).

J 6. Trace (y
2 - a2

)
2 — x2(x2 - 2a2

).

17 . Trace axy = x3 - a3
. (The Trident.)

1 8. Trace the curve sc
4 - 2mx2

y
2 + y* = a4

when m is respectively greater than, equal to, and less than unity,

and also when m is zero. [London, 1880.]

19. Trace
.» nX + a
y
2 = —

x-

a

20. Trace &2+a2

21. Trace o:(x + y)
2 = a(x-y)2

. [I. C. 8., 1879.]

22. Trace x3 — y(x - a)2
. [Oxford, 1876.]

23. Trace (
x Y2 _ y - a

\y-a) y + a
[H. C. S., 1881.]

24. Find the multiple points on the curve

2(;c4 f y
4
)
+ 5x2

y
2 + 4a4 = Ga2(x2 + y

2
)

and the directions of the tangents at those points. [H. C. S., 1881.]

Also trace the curve.

25. Trace the curve x3 + y
3 + Sexy = a3

,

and prove that as c diminishes to a the ultimate form of the loop is

that of an ellipse whose eccentricity = [Math. Tripos.]

26. Trace (<v-y)2(x + y)(2x+y) = a2y
2

. [Camb., 1879.]

27. Trace the curve r= a(l+cos0). (Cardioide.)
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28. Trace r= a + b cos 0. (The Limagon of Pascal.)

29. Trace r=a(2 cos 0± 1). (The Trisectnx.)
%

30. Trace the following spirals :

—

(a) r—aO. (Spiral of Archimedes.)

(ft) rd = a. (The Hyperbolic or Reciprocal Spiral.) %

(y) r20 — al
. (The Lituus.)

(8) r — aem$, (The Logarithmic or Equiangular Spiral.)

Show that in each case there is an infinite number of convolutions

round the pole, and that r sin 0 ----- a is an asymptote to (ft) and the

initial line an asymptote to (y).

31. Trace Aie curves

r — a cos 50, rcos50=^a, r = r&cos-}0.

32.

Trace the curves

cos §0, r8 = c$ sec ^ 9, cos ‘j 0.

What is the relation between them 1 [Camb., 1876.]

33.

Trace the curve
r-a

34. Trace

showing that a lino parallel to the initial line at a distance a above

it is an asymptote. Show also that there is an asymptotic circle r= a.

19 + sin 0

- sin 0

Show that this curve has an asymptotic circle ; also that as each

branch of the curvo comes from infinity it approaches the asymptotic

circle from the outside on one side of the initial line and from the

inside upon the other.

35. Trace r— 2a?- (The Cissoid)
cos O' '

from the polar equation.

6 — a
36. Trace r— a .

0 + a

37. Trace rO2 — tan from 9— 0 to 0 — 2tt.

38. Trace r^sin 3(0 — a) - sin 0 - sin a.

39. Trace tho " curve of sines
”

(Oxfokd, 1876.]

[Camb., 1879.]

40. Trace

41. Trace

for positive values of 0.

y = b sin -• •

a

y = e~^
x tan fix.

a
r — ~

[Trix. Coll. Camb., 1873.]
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42. Trace
a

1 - sin 20
[Oxford. ]

43. Trace (x+a)2
(y - a) 4* (y + a)2(x -a)- 0. [Oxford.]

44. Trace
t

9/!=^(*+ «)(*+!).
(x - a)(x* - &)’

45. Trace x = a( 1 - cos 0)1

y~a0 ]'

(The companion to the Cycloid.)

46. Trace y - c cosh -. (The Catenary.)
c

47. Trace y - x
2
4- cosh x.

1

48. Trace xl
y
2

-= (a + y)
2
(
62 - y

2
),

or r = « cosec 0 ± £.

(The Conchoid of Nicomedes.)

49. Trace fr + (a + a:)-}{y2 4- (a - x)2 } = aW,

examining the cases
(
1
)
a <b.

(2 )
a = b. (Lcmniscate of Bernoulli.)

(3) a >b. (Cassini's Ovals.)

50. Trace

51. Trace

y
A
-f x2

y
2
-f 2jf - X’ -- 0 . [Cbamkk.]

r — a(cos a cos 0 - J COS 3a cos 30 -f J
cos 5a cos 50 -

[Math. Trivos, 1878. J

52. Trace y = e~
xl

(The Probability Curve.)

53. Trace the curves

(a) v/
4 - axy- + x4 = 0.

(/3) ds
y
2 - 2abx2y ~ x

b = Q.

(y) y
b + ax4 - b2xy2 = 0. [Cramer ]

54. Trace xA - ax2
y 4- by3 = 0 . [DjcGda.]

55. Trace (a) x5 + y
r> — 2a3xy.

(ft)
xJ> 4- y

r’ - xy(arx 4- 62y). [Frost.]



CHAPTER XIII.

ON SOME WELL-KNOWN CURVES.

389. The present chapter is devoted to a short description of

some special curves whose properties have been investigated

and which have acquired historical importance, being associated

for the most part wit*h the names of some of the greatest Geo-

meters of past ages. It has been considered advisable to intro-

duce at this point an enumeration of their principal properties

for the sake of reference, though unnecessary to give in all

cases full proofs of the results stated as the student will be

readily able to supply them. In some cases several of these

properties will be found to have been already proved or sug-

gested for proof for the student in earlier pages.

The Cycloid.

390. This curve appears to have been discovered in the

fifteenth century, and is associated with the names of

Galileo, Descartes, Wren, Pascal, Huyghens, and many
others. It derives its principal interest from its importance

in Mechanics.
•

391. Def. When a circle roil* in a plane along a given

straight line, the locus traced ou * by any point on the circum-

ference of the rolling circle is called a cycloid.

392. Description of the Curve.

The nature of the motion shows th&t there is an infinite

number of cusps arranged at equal distances along the given

straight line. It is usual to confine the name cycloid to the

portion of the curve lying between two consecutive cusps.

e.d.c. 337
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Let A, B be two consecutive cusps, AGB the arc of the

cycloid lying between them. The line AB along which the

circle rolls is called the base. Let GPT be the rolling circle, G
the point of contact, GT the diameter through G, and P the

,point attached to the circumference, which by its motion traces

the cycloid. The circle GP£ is called the generating circle.

Let G be the point of the curve at greatest distance from AB;
this point is called the vertex. Let GX be the tangent at G

,

and GY the normal, obviously bisecting <H^base AB in the

point D. We shall take these lines as co-ordinate axes. It is

clear that the curve is symmetrical about GY.

393. Tangent and Normal.

Since a circle may be considered as the limit of an inscribed

regular polygon with an indefinitely large number of sides, the

circle GPT may be supposed to be for the instant turning

about an angular point of this polygon situated at G. Hence

the motion of the point P is instantaneously perpendicular to

the line PG, which is therefore the direction of the normal at P.

Moreover, since this motion is in the direction of PT, PT is the

tangent at P to the locus of P.

394. Equations of the Cycloid.

Let DQG be the circle described upon DC for diameter and

let D be its centre. DraW PM
,
PN perpendicular to GX and

GY respectively, the latter cutting the circle DQG in Q. Join

DQ,OQ t
GQ.

Now, since the circle rolls without sliding along the line AB,
every point of the circle comes successively into ^contact with
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the straight line, so that the length ofAD is half of the circum-

ference of the circle, and the portion
*

GA = arc GP= arc DQ.

Hence the remainder DG= arc GQ.

Now, PQCT, PQDG are parallelograms
;
whence, if a be the*

radius of the generating circle adH 6 the angle COQ
,

PQ=DG= arc CQ= a6.

Hence, if x, y be co-ordinates of P,

x=CM=NQ+QP=a(0+tiin 0)|

s y=CN=CQ—NO =a(\— cos 6))

From these equations the Cartesian equation may be at once

obtained by eliminating 6

;

the resujt being

x= a ,vers
~^+J :lay—y\ (b)

CL

but from the form of the result the equation is not so useful as

the two equations marked (a).

395. Length ofJte arc OP.

Since x= a(6+ sin 0)j
j/
= a(l — cos Q))

we obtain dx= a(Y+ cos 0)cZ0|

dy =a&mQdQ y
squaring and adding, ds2= dx2+ dy

2= 2a2(l + cos 0)d62

or

= 4a2cos?‘2^02,

ds= 2a cos -rdd
,

A

and upon integration s= 4a sin (c)

the constant of integration vanishing if 8 be measured from C,

so that 8 and 0 vanish together.

6
Again, since chord CQ= 2a sin

we have arc CP= 2 chord CQ .(d)

6
Further, since y=2a sin2£>

(®)
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396.

Geometrical Proofs.

These results may be established by geometry as follows :

—

Let TPG be any position of the generating circle, 0 being

the point of contact, GT the diameter through G, and P the

•tracing point. Let the circle roll through an infinitesimal

distance till the point of contfct comes to G'. Let the circle in

rolling turn through an infinitesimal angle equal to POQ, OQ
being a radius of the circle, and let P come to P\ Then QP'

is parallel and equal to GG\ and therefore to the arc QP. PP'

A

is ultimately the tangent at P and therefore ultimately in a

straight line with TP. Draw Qu at right angles to PP'; then

Tn and TQ are ultimately equal, and Pn is therefore the

increase in the chord TP in rolling from G to G'. Moreover

PP' is ultimately the increase of arc, and since in the limit

QP= arc QP— chord QP
y
and Qn is drawn perpendicularly to

PP', n is the middle point of PP, and therefore the rate of

growth of the arc CP is double that of the chord TP, and they

begin their growth together at C. Hence arc CP= 2 chord TP.

397.

Intrinsic Equation.

6
If in Fig. 88 PTX—yfs, we have ^= -

;
whence the intrinsic

equation of the cycloid is s= 4a sin \Js.

398.

Radius of Curvature.

The formula of Art. 322 gives

p cos \fs= 4a cos ^= 2PG,

radius of curvature= 2 . normal.
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399. Evolute.

By Art. 347 the intrinsic equation of the evolute of the

curve 8=f(\fr) is s=f'(\fr).

Applying this, we have for the evolute of the above cycloid

8 = 4a cos yjr, «

which clearly represents an equab cycloid (see Art. 349).

400. Geometrical Proofs.

These results may also be established geometrically as

follows :

—

Let AD b^ half the base and CD the axis of a given cycloid

APG. Produce CD to F, making DF equal to CD, and through

F draw FE parallel to DA. Through any point 0 on the base

draw TGG' parallel to CD and cutting the tangent at C in

T and the line FE in G'. On GT and G'G as diameters

describe circles, the form’er cutting the cycloid in the tracing

point P. Join FT, PG and produce PG to meet the circle

GP'G' in P' and join P'G'. Then obviously the arc (?'P'=

arcPT=DG=FG\ and therefore the point P' lies on a cycloid,

equal to the original cycloid, with cusp at Pand vertex at A .

Moreover P'G is a tangent to this cycloid and P'G' a norinal.

The
%
cycloid FA is therefore the envelope of the normals of the

cycloid A

C

and therefore its evolute; and P' is the centre of

curvature corresponding to the point P on the original cycloid.
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If, therefore, a string of length equal to the arc FPA have

one extremity attached to a fixed point at F the other end,

when the string is unwound from the curve FP'A, will trace

out the cycloidal arc APC. Thus a heavy particle may be

made to oscillate along a cycloidal arc,
by allowing the sus-

pending string to wrap alternately upon two rigid cycloidal

cheeks such as FA, FB.

Moreover, since PP' is obviously by its construction bisected

at G, the radius of curvature at any point of a cycloid is double

the length of the normal.

401. Area bounded by the Cycloid and its Base^

Let PGP QG'Q' be two contiguous normals. Then G, G'

are their middle points, and therefore ultimately the element-

ary area GPQG' is treble the elementary area P'GG'Q'. Hence,

summing all such elements, the area A P(lD is treble the area

ADFP'; i.e., the area of the cycloid is three-fourths of the

circumscribing rectangle, for the area of ADFP' is equal to the

area CXAP.
Now the length of AD= half the circumference of the circle

= 7TC&.

Hence the rectangle AXGD^ira . 2a= 2‘7ra
2
,

ancUtherefore the

semicycloidal area APCD~% . 2?ra2= |-7ra
2
,

and the area bounded by the whole cycloid and its base = 37ra2,

and is therefore three times the area of the generating circle.
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The Trochoids.

402. If the point P (in Art. 392) be attached to the rolling

circle at a point not upon the circumference, but at a distance

b from the centre, the curve traced is called a curtate or a pro-

late cycloid according as b is greater or less than the radius of

These curves as a class are called Trochoids.

It will be obvious from the mode of description that if b>a
the series of cusps which characterize the ordinary cycloid are

replaced by a series of nodes and loops.

403. The equations of a trochoid referred to the same axes as

the cycloid lV Art. 394 will obviously be

x=a6+ b sin 01

yz=a—b cos0 J

Epi- and Hypo-cycloids and Epi- and Hypo-Trochoids.

404. When a circle rolls without sliding upon the circum-

ference of a fixed circle, the path of a point attached to the

circumference of the rolling circle is called an epi- or a hypo-

cycloid according as the moving circle rolls upon the exterior

or the interior of the other.

The path of any other carried point is called an epi- or a

liypo-trochoid.

Fig. 92.

405. The figure (92) represents the three-cusped epi- and
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hypo-cycloids formed when the ratio of the radius of the

rolling circle to that of the fixed one is 1 : 3.
406.

Let the radii be respectively 6 and a. In the figure

the rolling circle with its carried point P is represented as

tracing the epi-cycloid. Let 0 be the fixed centre, Q the point

of contact, A the point with which P is originally in contact,

G the centre of the moving circle. Join OC, cutting the rolling

circle in D. Join QP, CP, and DP, the latter cutting the

initial radius OA, which we choose for os-axis, in T.

Then, as in Art. 393, PQ is the normal and PT the tangent

to the path of P. /

Let QOA = 0 and QGP= </).

a

Then, since arc QP= arc QA
,

we have b<j) = a6.

Hence* = ^=
2 26

and y],=pJX= Q+ t
a+2b
2b

1

407.

Again, CP makes with the a;-axis the angle

Hence the equations of the curve are

x= (a+ b)cos 0— 6 cos

y= (a+ 6)sin 0— 6 sin ~^0

J

(A)

408. If the carried point P be not upon the circumference

but at a distance mb from C it is plain that the corresponding

equations for the epitrochoid will be

x= (a -f 6)cos 0—mb cos
;

(b)

« y = (a+ 6)sin 0—mb sin
0j

409. The path of the carried point when the moving circle

rolls upon the interior of the circumference is obtained from

equations (a) or (b) respectively by changing the sign of 6.
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410. If p be the perpendicular from 0 upon the tangent PT
to the epicycloid (Fig. 92) we have

p= OD sin
|= (a+ 2b)sin

This furnishes us with the tangential-polar equation.

411. From the triangle OOP (or otherwise)

r2= (a+ 6)
2+

6

2— 2(a+ 6)6 cos 0

= (a+b)2+b2-2(a+ b)b(l — 2 sin2
|^

>

=«2+K«+b)b(-|^) '

the pedal equation.

412. Differentiating equations (a)

—j(a+6)sin 0+(«-+6)sin 0,

^= (a+ 6)cos 0— (a+ 6)cos
a ^0.

Hence, squaring, adding, and extracting the root,

^= ± 2(«+b)sin|)

0.

Hence *= cos
®

0,
a 26

s being measured from the vertex, where 6=Trb/a.

rPi 46(« + 6) a .

L hus s = —

-

v - cos ——

-

fyfra a+W T

is the intrinsic equation to the curve.

This may also be obtained quickly by applying the formula

d^=p+T^ &nd intcSratiDS-

These results will (as ,in Art. 409) all remain true for the

hypocycloid when the sign of b i? changed
;
or they may be

obtained independently.

413. Thus any epi- or hypo-cycloid may be represented by

any of the equations, p= A sin B\fs, or A cos B\Js,

sin B\fr, or A cos Bifr, •

r2=A+Bp2
,

the constants A and B being readily determinable in any par-

ticular case by aid of the preceding Articles.
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414. Any of these formulae give the radius of curvature.

. For example, taking p=A sin B\[s> we have

P=P+^2 =a ( 1 — -B*)8in jty oc p,

j,.e., the radius of curvature varies as the central perpendicular.

415. The evolute of any epi- or hypo-cycloid is a similar

epi- or hypo-cycloid. (Sec Art. 349.)

416. The equations of the tangent and normal at any point

on the curve where 6= a may he written

. a+2b a+2b
,

. a \
XH\n

2b
«-2/cos a = (a-f-2?>)sm-J

6
a]

a+2b .• a+ 2b a
x cos - a+ y sin ^ « = a cos

417. The polar equations of the tangent and normal with 0
for pole and OA for initial line are therefore

V Sin
^2b

+a~ e
)
=(«+ 2i)sin J|a

j

(aa . n\ a
r cos^ + a— Oj = a cos-yi

If the initial line were chosen to bisect the arc joining

two consecutive cusps A
,
B, we should have to change a to

•jpb irb .

a + - and 6 to 0'+ -. If this change be made, the equation

of the normal becomes

rsm
\2b

+a ~ eraam
2b

a ’

which shows by comparison with the tangent that the normal

touches another epicycloid formed by the rolling of a circle of

radius B upon another of radius A where

A+ 2B=a,
A

__ a

2B~2b'

i.e.f A =
i

a+2b‘
a,

T>_ a
a+26

b.

This also follows from Art. 241 and verifies the result of*Art.
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418. Double method of generating Hypocycloids.

Changing the sign of 6 in Equations (a) the equations of the

hypocycloid are

x= (a*— 6)cos 6+b cos
a
'

i
)

~0

, <0

y= (a — 6)sin 0— 6 sin - 0

Writing for 6 and **-"*"- 0* for 0, we have° 2 c

«— c a+c., a+ c a— fv^
J5 =—rr- cos 0 +- cos 0 1

z c 2 c

05-— C . CL+ C!/V ft+ f! . ft— C*,
y= sin O' sin— 6° 2 c 2 • c

and it is evident that a change in the sign of c does not alter

these equations. It follows therefore that the same hypocycloid

can be generated by the rolling of either of the circles whose

radii are upon a circle of radius a.

And if we write a+c for 6 and make the same change for 0

as above, the equations of the hypocycloid become

x= (a+ c')cos 0'— c cos

y= (a

+

c)sin 0' — c sin -
6
0'.

These are the equations of an epicycloid. It appears then

that the hypocycloid formed when the radius of the rolling

circle is greater than that of the fixed circle may be regarded

as an epicycloid generated by the rolling of a circle whose

radius is the difference of the original radii. * This can also be

shown geometrically.

419. If the ratio of a:b be com* leusurable, there will be a

finite number of cusps, the curve returning into itself.

The equations
a h \

op=(a— 6)cos 0+6 cos— 0

• 2/= (a— 6)sin 0— 6sin^~-^0

* Peacock, Examples. Citing Euler, Acta Petrop. % 1784.
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of the hypccycloid become, when b= Ja.

x=a cos 01

y= 0 y
indicating that the curve degenerates into a diameter of the

*fixed circle. This admits of easy geometrical proof.

If b= \a, we have

x = ^(3 cos 0+ cos 80)= a cos30

y= ^(3 sin 0— sin 30)= a sin30

giving x^+y^=z($

the four-cusped hypocycloid.

When a= b the equations .of the epicycloid reduce to

x= «(2 cos 0— cos 20),

y = a(2 sin 0— sin 20),

and after elimination of 0 we obtain

{x2+ y
2— a2

)
2= 4a2{(x— a)2+ y

2
}.

If now the origin be transferred to the point (a, 0) and the

resulting equation transformed to polars, it will be apparent

that the epicycloid becomes a cardioide (Art. 424).

The trochoidal curves corresponding to this case become

lima9ons.

It follows from Art. 415 that the evolute of a cardioide is

also a cardioide.

420. The portion of the tangent to x%+y$ = a$ intercepted

between the co-ordinate axes is of constant length.

The portion of the tangent of the three-cusped hypocycloid

intercepted by the curve itself is of constant length.

421. It may be observed that the envelope of any line whose

equation can be thrown into the form

x cos a+ y sin a = c sin na(= p),

being obtained by the elimination of a between this equation

and —x sin a+y cos a= nc cos na ,

has for its pedal equation

r2= c2sin2wa+ riWcostna

=p2+n2{c2—p2
),

or r2= (l —n2
)p

2+ n2c2
,

and is therefore an epi- or hypo-cycloid.
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422. The equation of the pedal of this curve is obviously

r=c sin 710,

and therefore the polar reciprocal, which is the inverse of the

pedal, is the Cotes’s spiral

r sin 7i0= constant (Art. 454).

423. The student is referred to Dr. Heath’s Optica, Arts. 100

to 103, where epicycloids are shown to occur in certain cases

as caustics by reflection from a bright circular arc.

The JLiMAgoN of Pascal, the Cardioide, and ,

i

THE TrISECTIUX.

424. Take a circle OQD of which 0D (= b
) is the diameter

and E the centre. • Let a straight rod PP/
of any length (2a)

move in such a manner that its mid-point Q describes the

given circle whilst the rod is constrained to pass through a
fixed point 0 on the circumference. Its ends trace out the

Lirna^n.

. Fig. 93.

Obviously this rod can be constrained to move as described

above by a simple mechanical contrivance.
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Taking OD for initial lino let r, 6 be the polar co-ordinates

of P, then evidently

r=QP+OQ=a+b cos 6 (1)

Similarly OP'-r'-a—b cos 6.

f

This however is obtained at once from equation (1) by

increasing 0 by tt. Hence P and P' describe the same curve.

Evidently also any “ focal chord ” PP' is of constant length.

When a= b, the limacjon is called a cardioide from its heart-

like shape. The curve then has a cusp at 0. Other limagons

are Qf two classes according as a is > or < b. The outer curve

in the figure typifies the class for which a is > f
b. The dark

curve on OB for diameter is the cardioide. The inner curve is
t

a lima<jon for which a is < 6. There is on this class a node at

0. The dotted curve is the circular locusof Q. The point P
is shown in the figure as tracing the cardioide. The equations

of the ^particular curves drawn in the figure are

r= 2cos0, r= l + 2cos0, r= 2+ 2cos0, r= 3-f2cos0.

425. Considering the motion of the rod the following facts

will be clear :

—

(a) Since Q is moving along the tangent to the circle the

instantaneous centre for the motion of the rod must

lie somewhere in the normal QER.

(b) The motion of the point of the rod which is just passing

through 0 can only be in the direction of the rod itself.

Therefore the instantaneous centre must lie somewhere

in a line OR drawn at right angles to the rod.

(c) The instantaneous centre must therefore be at R, the point

on Q’s circular locus which is diametrically opposite to Q.

(d) The motion of P and of P' is .therefore at right angles

to RP and RP' respectively. These lines are therefore

the normals at P and P'.

(e) Thus in any lima^n the normals at the extremities of any

focal chord intersect on a fixed circle.

(f

)

,In the case of the cardioide QP= QR= QP' and the normals

at P and P' intersect at right angles.

(g) The tangents at the ends of the focal chord PP' (of the

cardioide) also intersect at right angles, the figure

TPRP' forming a rectangle.
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(

h

) Also in this case, since RQ if produced passes through T
and ET—3ER— constant, the locus of ortho-tomic tan-

gents (or
" orth-optic ” points) is a circle whose centre

is E and radius three times that of the Q-circle.

426. The cardioide and the lima^on may also be generated*

as an epicycloid or an epitrochoid by the rolling of one circle

upon another of equal radius. (Art. 419.)

427. These curves are also the first positive pedals of a circle

with regard to an arbitrary point.

Take a circle, centre G and radius a. Let OR be a {Perpen-

dicular from
§
the pole upon the tangent at any point Q. Let

GO—

b

} OP=r, ROG—6. Draw GR at right angles to OP.

Then r= OR + RP= a + b cos 6.

When 0 lies upon the circumference of the circle we have a=»b

and the pedal becomes a cardioide.

428. The equation r=a+b cos 6 shows that a lima^on is

the inverse of a central conic with regard to the focus, and that

a cardioide is the inverse of a parabola.

429. For some purposes it is a little more convenient to call

the angle POA'—Q (Fig. 93), and the equation of the cardioide

then becomes r

—

a(l — cos 0).

We have at once

or

i.e.y

dO 1— ec*0

dr sin 0
tan 0= r

0=|
oPt=\p()a'.

= tan

;

430. This property shows that the carves

r=a(l— cosO),

r= 6(1+ cos 6),
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whose a±es are turned in opposite directions cut at right angles

for all values of a and b .

Thus the “ Orthogonal Trajectories ”
(i.e., curves which cut

at right angles) of the system of cardioides obtained by giving

fa different values in the first equation is the system of cardi-

oides obtained by giving b different values in the second. This

result may be obtained by inversion of the corresponding

property for parabolas.

431. The particular lima^on shown with a node in Fig. 93,

and whose equation is r= 1 + 2 cos 9,

is called the Trisectrix.

With centre at 0 (Fig. 93) and radius OE describe a circle.

Lay off from OE any angle EOS less than four right angles, and

let the bounding radius cut the circle (centre 0) at S,
and

the chord ES cut the limagon at J. Then it is easy to show

that OJ trisects Eds*
•

The Curve of Sines, Harmonic Curve, Companion to the

Cycloid.

432. Figure 95 is a graph of the equation

y = sin x.

I
y

Fig. 95.

There are points of inflexion whenever the curve cuts the

tr-axis; also the curve lies entirely between the lines y= ±1.

433. The curve y—m since (sometimes referred to as the

Harmonic Curve) only differs from the above in that its

ordinates are each m times the corresponding ordinates of the

Curve of Sines.

434. The companion to the cycloid

x=ad,

2
/=a(l — cos0),

* Azemar and Gamier, Trisection de VAngle, Paris, 1809. Cited by Peacock,

Examples, p. 173.
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differs from the cycloid in that/ instead of producing the

abscissa NQ to P (Fig. 88) to make the produced part

QP= arc CQ,

we make NP= arc CQ.

The equation may be written

. (x 7r\y- (a=tt8inU— 2/

and therefore the locus is the harmonic curve.

Examples.
Trace the curves

y= cos x, • y= tan x, y= cot.r,

y— sec x, y= sinx+ cos x, y= sin 3a?,

y -- sin (tt sin *tf), y= sin (7r cos a ), y= cfts(7r sin .r),

The Cissoid of Diocles.

435. Let J.PP be a semicircle whose diameter is AH, BT
the tangent at B, APT a straight line through A cutting the

y= cosec x,

y—e*ainx,

y =» cos(?r cos x).

semicircle and the tangent in P and T. Take Q upon AT
such that AQ^PT. The locus of Q is the cissoid.

E.D.C.
'
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' 436. The Cartesian equation with A for origin and AB for

aj-axis is y\2a— #) = x3
.

The polar equation is

r= 2a sin20/cos 0.

* 437. The curve is the first positive pedal with regard to the

vertex, of the parabola y
2+ 4bx= 0, where b= 2a.

It is also the inverse with regard to the vertex of the para-

bola y
2= \bx‘ the constant of inversion being the semi-latus

rectum.

438. The curve was invented by Diodes in the sixth century

for the construction of two mean proportionals' between two
given lines. Take BG, one extreme, as the radius and con-

struct the cissoid. Erect a perpendicular GR to GJi through

the centre G equal to the other extreme. Join BR cutting the

cissoid at Q ;
and let AQ produced if necessary cut GR at S.

Then VS is the first of the mean proportionals.

439. The, curve can be mechanically constructed by an in-

strument invented by Newton.
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Take a rod LMN bent at right angles at My
and such that

MN^AB (Fig. 96). Let the leg LAI always pass through a
fixed point 0 on GA produced so that AO=CA< and let N
travel along the perpendicular to AB through 0. Then Q the

mid-point ofMN traces out the cissoid.

The Witch of Agnesi.

440. Let AQB be a semicircle whose diameter is AB. Pro-

duce AIQ the ordinate of Q so that

MQ:AfP=AM:AB
t

the locus of-P is the Witch. (Fig. 97.)

IfA be the origin and AB the a-axis the equation is

xy2 = 4a2(2«— &).

This curve was discussed by Maria Gaetana Agnesi, Professor

of Mathematics at Bologna, 1748.

The Folium of Descautes.

441. The Cartesian equation is

x*+y*=3axy.

There is symmetry about the line y= x. The axes of co-

ordinates are tangents at the origin and there is a loop in

the first quadrant. The curve consists of an infinite branch

running to the asymptote x+y+a ==0 at each end and lying

on the upper side of that line.



356 CHAPTER XIII.

The curve being a cubic with one node has its deficiency

zero and is therefore unicursal.

Let

Then

y=mx.

Sam
X~1+m3 ’

_ Sam?
^~”1 +m*

Hence by assigning various arbitrary values to m any number

of points can be discovered lying upon the curve, and the

curve might be completely traced in this manner.

The Logarithmic Curve and the Curve of Frequency.
/

442. The equation of the logarithmic curve is

x— log y or y = ex.

When x is negative and very large the ordinate diminishes

without limit and the #-axis towards — becomes asymptotic.

Travelling from left to right, equidistant ordinates form a

geometrical progression and on the right-hand side of the y-

axis rapidly increase as x increases.

The subtangent ^ =1, and is therefore of constant length.

443. The curve y = is known as the Curve of Frequency/

of Error or the Probability Curve.* All ordinates are positive ff

it cuts the y-axis perpendicularly at unit distance from the

origin. The curve is symmetrical about the 3/-axis running

asymptotically to the cc-axis on its upper side at both extremi-

ties. There are points of inflexion where x= ±—

* Airy, Theory of Errors of Observation .
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The Chainette or Catenary, and its Involute

THE TrACTORY OR TrACTRIX.

444. The chainette is the curve in which a uniform heavy

string will hang under the action of gravity.

Its Cartesian equation is proved in books on Analytical

Statics to be y=c cosh

Its form is that represented by the curve PGP' in Fig. 100.

It is symmetrical about a vertical axis Oy through its lowest

point C. The ordinate of C is c.

445. Let PN be an ordinate, PT the tangent, NQ a perpen-

dicular from N upon the tangent P27

,
the normal cutting the

&-axis in G. The cc-axis is called the directrix.

(1) Then tan ^/r=^= sinh
^

or \[s= g<l

(2) Also -jpg =8ec\[r= yjl+ sin :

=

cosh

^

Hence NQ = e.

(3) Again ^= a/
1 +sinh2

£= coshy

whence s= c sinli ~ if 8 bo measured from the vertex G
c

to P so that s and x vanish together.

*Dr. Routh, Analytical Statics,
vol. I. Art. 443.
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(4) Also PQ= QN tan \Js=c sinh *

=

8.

c

(5) Hence the path of Q is an involute of the chainette. This

curve is called the Tractory, and possesses as shown in

(2) the geometrical property that the tangent to the

path is of constant length.

(6) Ifa person travelling along Ox drags a stone along the ground

(supposed perfectly rough) from the initial position 0 by

means of a string of length c, the path of the stone is

the tractory.

(7) From the right-angled triangle PQN we have at once

y
l= c? -f-

s

2
.

• X x>

(8) Since s= c,sinh‘ and sinh -= tai \\[r the intrinsic equation
c c

of the chainette is #= c tan \Js.

(9) ffence the radius of curvature = c sec2\/r.

But PG= y sec y\r= c sec2i/r.

Hence*the radius of curvature is equal to the normal.

(10) Ifx y y' be the point Q of the tractory and \js = Q&x and s'

the arc CQ, we have

dy . ,
y’

-r?= —sm \fs =
CIS

7
c

log ?/ = constant— •

c

y'= c when ,<?'= (),

Hence the constant= log c.

(12) If a point X be taken on the tangent QN to the tractrix

so that NX is of constant length, the path of X has

been called by Riccati the Syntractory.*

* Peacock, p. 175.
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The Conchoid of Nicomedes.

446. AB is a straight line and 0 a fixed point
;
V any point

on the given line, and on OV and OV produced, points P, P
are taken so that

«

VP'— VP— a constant length.

The locus of P or P' is called the Conchoid.

Let the perpendicular ON upon AB be a and let FP= 6.

Then, taking 0 for pole and the initial line Ox parallel to AB,

the polar equation is r= a cosec 6±b
f

the + referring to the branch more remote from A and the —
to the branch nearer to A. These are respectively called the

superior and the inferior branches Both branches belong to

the same curve and are included ir» the Cartesian equation

xhf= (a+y)2(b2-y2
),

the origin in this case being taken at N and NA for a’-axis.

447. There are three classes, according as a is <, =, or >6.

If a• be < 6, there will be a node at 0 and a loop below the

initial line.

If a = b, there will be a cusp at 0.
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If a > b, the curve will be as shown by the dotted lines 3, 3 in

the figure. As defined by the Cartesian equation, there

would also be in this case a conjugate point at 0.

448. The curve was used for the trisection of an angle, and

Jhe insertion of two mcau proportionals between two given

straight lines. It admits, as shown by Nieomedes, of a simple

mechanical construction.* For it is easy to make a mechani-

cal contrivance which will constrain the motion of a given rod

so as to pass always through a fixed point, whilst a given point

of the rod performs a rectilineal path. By what precedes, any

other point of the rod describes a conchoid.
f!

THE SPIRALS.

The Equiangular Spiral.

449. This curve possesses the characteristic property that

the tangent makes a constant angle with the radius vector.

T
Fig. 102.

Let 0 be the pole, PT the tangent at P, OY the perpen-

dicular, OT the polar subtangent cutting the normal in C. Let

OPT=a.
We have the following properties :

—

(1) p= OY= r sin a,

(2) p= = r cosec a = CP.

Hence C is the centre ^nrvuture.

* Montucla, Hntoire des Math., torn. I., 1&C3G, referred to by Peacock ; and Newton,

App. to Arith. Univ.
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,n\ ur
(3) d8

=C"aa

Hence if the arc be measured from the pole, where r= 0,

we have r= scosa.

But r=PT cos a.

Therefore PT=s.

(4) If YY' be the tangent to the first positive pedal curve

Y'Y0=YP0= a.

Hence the first positive pedal is an equal equiangular

spiral. Hence also all other pedals are equal spirals.

(5) Since PCSs a tangent at 0 to the evolute, and 0CP= a, the

first, and all other evolutes are equal spirals.

(G) From similar considerations the inverse, and the polar

reciprocal with regard to the pole are equal spirals.

(7) Since ^^=tana we have ~*=cot a.dO, and the polar

equation is of the form

r=cw,0 cot a

(8) If the spiral roll along a fixed line, the locus of the pole,

and also of the centre of curvature of the point of con-

tact is a straight line.

450. Of the system of “ Parabolic Spirals ” v-aO11 the most

remarkable are those for which

w=l (the Archimedean Spiral).

n= — 1 (the Hyperbolic or Reciprocal Spiral).

— l (the Lituus).

The Spiral of Archimedes.

451. The equation of the curve is r= ad.

This curve is due to Conon, wh. however died before he had

completed his investigations of its properties. These inves-

tigations were continued and completed by Archimedes who

published them in a tract on spirals still extant.

(I) If a circle of radius a be drawn with centre at the pole

• any radius vector of tb<7$torve is equal to the arc of this

circle measured initial line to the point in

which the radius vector cuts the circle.



362 ' CHAPTER XIII.

(2) We have for this curve

fp

p= -
7 - —

;
tan 0= --= 0

;
subtangent=— •

1 Va2+r2 a 6 a

(3) The locus of the extremity of the polar subtangent is

PL= a{
dl+tf-

Fig. m
For this curve the corresponding locus is

r.,= a[0.
2+-£)1 2\;

and so on. The 71
th locus thus formed is

These loci thus form a series of “ Parabolic Spirals ” of

ascending order.*

(4)

The area bounded by any portion and its extreme radii

vectores can easily be found by the Integral Calculus.

The Reciprocal on Hyperbolic Spiral

452. The polar equation is rQ = a.

This curve is the inverse of the Archimedean spiral; The

name Hyperbolic is derived from the analogy between the

form of its equation and that in Cartesians for a hyperbola

referred to its asymptotes.

Peacock, Examples
, p. 180.
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If a circle be drawn with any radius and centre at the

origin, the arc of this circle intercepted between the

points where it is cut by the curve and by the initial

line is of constant length.

(2)

We have tan </>
= = r

^
~ — 0.

o(16= r2 .
— — «= constant.

dr(3) Subtangent

The asymptote is at a distance a from the initial line

and above it.

(4) The pedal equation is

111
T“ (r

The Lituus.

453. The equation to the curve is

r=aQ~

K

The initial line is an asymptote.

Fig. 105.
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If any radius vector OP be taken and a circular sector OPA
described bounded by the radius vector and the initial line, its

i 20
0/2

areais

i\nd is therefore constant.

Cotes’s Spirals.

464. The group of curves included in the formula

IT r
are called Cotes’s Spirals. They occur as the path of a particle

projected in any manner under the action of a' central force

varying as the inverse cube, of the distance.

There are five varieties.

(1) If J?= 0, ^
is constant, whence 0 is constant and the curve

is an equiangular spiral.

(2) If -4 = 1, we have
^

giving u— fjBQ, 6 being supposed measured from an

initial line drawn parallel to the asymptote. This is )

the reciprocal spiral. 1

More generally

uZ+&2=Au2+b’

or Q'-(A-D*+A
The right-hand side may be put into one of the forms

n2(u2+

a

2
),

?i
2(a2—u2

),

according to the signs of A— 1 and B
;
a and n being

constants.

(3) If ©2=%2(u2+a2)’

we have

and

—J^ =nd6

u=a sinh n0.
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(4) If
(^) =n%v?-a\

we have similarly u = a cosh nd.

(6) If (^)
=n2(a2—

u

2
),

u = a sin (Art. 387.)

Cases (3) and (4) present no difficulty in tracing.

Involute of a Circle.

455. If a thread be unwound from a circle, any point of the

unwinding fliread traces out an involute of a circle. Let PQ
be any position of the thread, P the tracing point. Then PQ
is a tangent to the circle and a normal to the involute. Let

0 be the centre of the circle and a its radius. Then clearly

the pedal equation is

Also p-PQ- 1 £<sAQ=a\Jrt

. . a\]s
2

giving
2

'

8 being measured from the point A* at which the involute meets

the circle, and OA being the initial line.

Jf OF be the perpendicular from 0 upon the tangent at P

OV=a\fr=a(YOX+iywe have
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Hence the first positive pedal is the Archimedean spiral.

The polar equation is at once obtainable. For

or
(9 =-

s/r2—a2

a
COS"

The Evolute of a Parabola.

456. The evolute of y
2= 4ax may be shown to be the semi-

cubical parabola 27ay2= 4{x— 2a)3.

W
The cusp is at the point (2a, 0), and the curve cuts the

parabola again at a point whose abscissa is 8a, The tangent

to the evolute at this point cuts the parabola again upon the

ordinate through the cusp.

From points on the right-hand side of the evolute threo real

normals can be drawn to the parabola. From points on the

left side only one real normal can be drawn.

The Evolute of an Ellipse.

457. The equation of the evolute of x2/a2 + y
2/b2=l has been

shown to be (ax)$+ (by)%= (a
2— b2)$.
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There is a cusp at each point where the curve meets the

co-ordinate axes.

From points within the evolute four real normals can be

drawn to the conic. From points outside two normals can be

drawn.

Normals from the portion of the ellipse marked (1) touch

the portion of the evolute marked (1), and the correspondence

is similarly denoted by numerals for the other quadrants.

1)2 tt
2

The radii of curvature at A and B are respectively
^
and -g-

Thus AQ~
}1

anil
a b

/a 2 b2\
The length of the evolute is

4(^ ^ j-

Cassini’s Ovals.

458. Let v and r' be. the distances of a moveable point P
from twro fixed points S and S'. The locus traced out by P
when rr = constant ( -- b2 say)

is called an Oval of Cassini.

Let SS'= 2a and take S3' for ce-^xis and its mid-pjpint 0 for

origin. The Cartesian equation is then 4

.
[(x-a)*+y*\[{x+a)*+y*] =h\ | (1)

(r2 + a2
)
2— 4aV2cos20= b4,

r4+

a

4— 2r2a2cos 20 — b4 .

or in Polars

reducing to
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If b= a= c/^/2 this further reduces to

r2= c
2cos20. .(2)

This species of Cassini’s oval is called the Lemniscate of Ber-

noulli. This is shown by the thick line in the figure.

r It is the first positive pedal of a rectangular hyperbola with

regard to the centre, and possesses the property that

SP~S'P = OPJl.
y

(jfrZZ

Fig. 109.

In equation (l) when b is < a the curve consists of two

ovals within the loops of the lemniscate.

When b is > a the curve consists of one oval lying outside

the lemniscate.

The curve (ar + y
2)'1 == a2x~ + bry1

,
which is the pedal of a

central conic with regard to the centre, has a similar shape, and

becomes a Bernoulli’s lemniscate when the come is a rectangular

hyperbola.

Cartesian Ovals.

459. If r and r be as defined in Art. 458, the loci indicated

by the equation Ir+mr'= n,

are called Cartesian Ovals.

This equation in general gives rise to a quartic Cartesian

equation.

The following cases will be recognized :

—

If Z=m we have r+r'~ constant
;
an ellipse.

If !=-mwe have r—v'= constant
;
a hyperbola.

If n = 0 we have r : r' = constant
;
a circle.
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(Lv dr*
Also since £^-+m^-=0 it will be evident that in all cases the

normal divides the angle between r and r' in such manner

that the sines of the portions are in the ratio m : l. The

student is referred for further information to a chapter on

Cartesians in Professor Williamson’s Differential Calculus*

wh&re several interesting properties are investigated.

The Quadratrices of Dinostratus and Tschirnhausen.

460. Let AFA
X
be a semicircle of which AA

X
is a diameter

and 0 the centre. Let QN be an ordinate of a point Q on the

circle and P another point so related to Q that the ordinate

QN travels at uniform rate from A to 0 in the same time that

OP rotates uniformly from OA through a right angle. Let

OP andNQ intersect in R
}
then the locus ofR is the Quadratrix

of Hippias or Dinostratus.

Let NOP= 6 and OA = a, then a* 1 AP= a6.

angle AOP
*

' S° A0 ~~ right angle

Hence AN=-~ or 0= ^
(0 'being the origin).

But * -=tan 6.
x

E.D.C.

* Sixth edition.

2a
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Hence the Cartesian equation of the locus is

, ttX

y=x“‘a
The form of the equation shows that there is symmetry

' about the y-axis, and the curve may be seen to be as shown in

the accompanying figure.

461.

This curve if accurately traced could be used for the

trisection of an angle. Lay off any angle AOP by a line OP
cutting the quadratrix in R Draw the perpendicular RN to

Oil. Trisect AN at L, M and erect perpendiculars to AN
cutting the curve in X, Y. Then since

f

al~\an=
o

1 2o0
3'

7T
’

the angleA0X=t
a

Similarly AOY= ,

•5

and the angle is trisected.

462.

Again, since the intercept OK made on the y-axis is

j

,

. TTX 7 TfX
cot -= Lt COS rr-

2a 2a

TToC

2a 2a _ 2a

. irx TT T

\

we could (if the curve could be accurately drawn) measure 0E
and hence deduce the value of x. Hence tho area of a circle

could be found. It is from this property that the curve derives

its name.

463.

If a parallel to the cc-axis be drawn through P cutting

MQ in 8, tho locus of 8 is

. « .x a—

x

y= asin 0=asin-jj
1 Z d

or a cos

This curve is called the Quadratrix of Tschimhausen.
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CHAPTER XIV.

UNDETERMINED FORMS.

464. In Chap. I. it was explained that a function may
involve an independent variable .in such a manner that its

value for a certain assigned value of the variable cannot be

found by a direct* substitution of that value. And in such

cases the function is said to assume a “ Singular” “ Undeter-

mined” u Illusory,” or “ Indeterminate ” form.

465. It is proposed in the present chapter to consider more

fully the method of evaluation of the true limiting values of

such quantities when the independent variable is made to

approach indefinitely near its assigned value.

466. List of Forms occurring.

Several cases are to be considered, viz., when upon substitu-

tion of the assigned value of the independent variable, the

function reduces to one of the forms

% Ox oo, —
,

oo—oo, 0°, oo°, or l
00

,

U oo

It is frequently easy to treat these cases by algebraical or

trigonometrical methods *without having recourse to the Differ-

ential Calculus, though the late ? is required for a general

discussion of such forms.

By far the most important case to consider is that in which

the function takes the form ^ ;
for, in the first place, it is the

one which most frequently occurs
;
and, secondly, any of the

other forms may be made to depend upon this one by some

special artifice.

373
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467. Algebraical Treatment.

Suppose the function to take the form ~ when the inde-

pendent variable x ultimately coincides with its assigned value

a

.

Put x=a+h and expand both numerator and denomin-

ator of the function. It will now become apparent that the

reason why both numerator and denominator vanish is that

some power of h is a common factor of each. This should now
be divided out. Finally, put k= 0 so that x becomes =a, and

the true limiting value of the function will be apparent.

In the particular case in which x is to become zero the

expansion of numerator and denominator in powers of a? should

be at once proceeded with without any preliminary substitution

for x.

In the case in which x is to become infinite, put x= -
f so

y
that when x becomes = oo ,y becomes =0.

The* method thus explained will be better understood by
examining the mode of solution of the following examples.

Ex. 1. Find Ltx^alz».
X

Here numerator and denominator both vanish if x be put equal to 0. We
therefore expand ax and bx by the exponential theorem. Hence

X

|l+.r log,a + ^(log
<^)

2
+...} - { 1 + log.6

+
|*(log„6)2 + . .

.j

=Zf.-o[log,a- log.6+|j(log.a| 2- log,i|2)+...j

= log«a - log,6 = log,“-

Ex. 2. Find Lu x7 -Safi+ l
‘1
#3 -3#2+2

This is of the form ? if we put x=l. Therefore we put x=l+A and

expand. We thus obtain

T* ^•7 -2^B+l__ T * (1+A)7 -2(1+A)6+1
2~^r+A)*“3(l +Ay+2

(l+VA+2lAa+...)-2(l+6A+10A*+...)+l
A“°

* (1+3A+3A2+ ...)- 3(1 + 2A+P)+

2
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-Lt\

-Lth,

- 3h 4- A*+ . .

.

-3A4-...

— 34*A + ...
tt—3+ ...

= _-= !.

It will be seen from these examples that in the process of expansion it

is only necessary in general to retain afew of the lowest powers of h.

Ex. 3. Find

Since

we have

tan.r_ 1 sin x
x

~
cos# x

X

Hence the form assumed by is 1“ when we put x—0.

Expand sin x and cos x in powers of x. This gives

LtxJ^Y=Ltl4 •

3 -

.r / \x — 4-

.

' 2 !

= Ltx=0(l 4-~ + higher powers of x^x

=Z^„(l +--
3 )

where l is a series in ascending powers of x whose first term (and there-

fore whose limit when x=Q) is unity. Hence

Ltx=J^~y=Ltx^{(\ +^)'
?
}

S = «
4
. by Art. 20.

1

Ex. 4. Find Ltx^~x
.

This expression is of the form 1®.

Put 1 -x=g,

and therefore, if x= 1, y=0
;

^

therefore Limit required =Ztf„«o(l * ;/jy=c~1 (Art. 20).

3

Ex. 5. Z^*»oo«r(ci* — 1).

This is of the form oo x 0.

Put

therefore, if x—co,

and

x— ->

y
y= o,

Limit required =Zfy.o-—-=log/z (Art. 21).

y
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Examples.

Find the values of the following limits :

—

1 • litXa*0
a' -l
7/* - 1

'

r
2.

*»-i

q Tf #
m~ 1A Ltx^r -^

4. ztrJ'+fEzL
X

n r

*

#4+ Jz3 ~.r2 — 5#+ 4
5.

6. Z^-i'
.t
5 — 2.r3 — 4x2+ 9x — 4

.^-ar^+ir-]'

7. Z*x
«* — <!“

*•- '

q , j; cos — log( 1 + a')
J.

-j.2

10.

11. Ltx=Q
X — Kill # COS X

12. Ltt=o-
lU

'

./••‘cos #

, o J . cosh X — cos X
10. Jjrtx—Q-- .

x sin x

14. Z*x=o^-r*
tan-1#

1 5. Ltx**

o

sin-1#— sinh.r

16. JitxaeO-

#cos3#-log(l 4-#)-sin~

1 / . LtX *~

0

18. Z<,»

2 sin #-f tanh
-1#— 3#

e*sin# —#— #*

V+#logy -x)

*<

19. Z<x=o
^c4 — sin*#2

so. jj^yj

21.

22.

23. Lt„0
|

/Sin

1

24.

1

26. Ltx~0(covers#)*.

26. Zk^(cosec x)^31
.

Application of the Differential Calculus.

468. John Bernoulli* was the first to make use of the pro-

cesses of the Differential Calculus in the determination of the

true values of functions assuming singular forms. We propose

now to discuss each singularity in order.

46.9. I. Foim

Consider a curve passing through the origin and defined by

the equations x=\fr(t),'

1

y=<t>(t).}

* Acta Eruditorum, 1704.

i
“>1*1
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Let x, y be the co-ordinates of a point P on the curve veiy
near the origin, and suppose a to be the value of t correspond*

Fig. 111.

ing to the origin, so that 0(a) = 0 and \[r(a)= 0.

Then ultimately we have

Hence

L{ULtu»eoN=rA,Jl-Lt,.„M

jt _ T+ .

and if be not of the form
^
when t takes its assigned

value a, we therefore obtain

Tt ^(O_0(a)
<=°#) W

But, if be also of undetermined form, we may repeat

the process
;
thus =Ltt=afr$x = etc.,Lt

*'<*>-

'““YXty
proceeding in this manner until we arrive at a fraction such

that when the value a is substituted for t its numerator and
denominator do not both vanish

,
and thus obtaining an intellig-

ible result—zero, finite, or infinite.

470. Another Proof of the Method.

We may arrive at the same result in another way, thus :

—

Let take the form when x 'approaches and ultimately

coincides with the value a. Let x= a+h. Then by Taylor's

Theorem = <t>(
a)+ n

'<f>'(
a+0h) _ 0'(^+ Oh)

yfr(x) y/,(a) + hr/,\a+

0

x
h)“ ^(a+dji)'
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for <f>(a)= 0 and \fs(a)=0 by supposition. Hence in the limit

when x=a (and therefore A = 0), we have

r* $(x) _ </>'(u+0h) _ <f>(a)^ X=a
yfr(x) “ V(tt+ 0X

A)” Vr'(a7

#
If it should happen that 0'(a) and ^'(a) are both zero, we can,

as before, repeat the process of differentiating the numerator

and denominator before substitution for x.

Ex. 1.

Here

Lt
sin 0-0

0~o
"

</>(0)=sin 0-0, and y/r(0)= 03
,

which both vanish when 0 vanishes.

</>'(#) - cos 0 - 1, and i/r'(0)- 30*,
#

and both of these expressions vanish with 0.

Differentiating again

Vm^)— - sin 0, and ^"(0)=60,
and still both ex])ressions vanish with 0. We mu3t therefore differentiate

again </>'"( 0)= - cos 0
,

and 0)

—

6,

whence </>"'(0)=— 1, and ^r'"(0)=(>

;

sin 0-0 1
therefore

Ex. 2. Lt.

Lt
0-o (j*

e0 -tf 0+ 2 sin 0-40
0=0 0*

=/,r
+ e 0 + 2 cos 0- 4

0=o

=Lt

=Lt

—Lt

=Lt

bP
e0 — e~

0 - 2 sin 0
0—0 20^

e
0+ e~

0 - 2 cos 0
o ‘ 600*

'

— 2 sin 0
0=° 120(9

e^+^+2 cos 0

[Form «]

[Form ?]

-°1
oJ

91
oJ

Form

Form

0=o 120

1

30

471. The proposition of Art. 469. may also be treated as

follows.

Let <j>(a)=0 and \Js(a)= 0, and let the p0* differential co-

efficient of <j>(x) and the 2
th of y/r(x) be the first which do not

vanish when x is put equal to c&. Then by Taylor’s Theorem,

putting x= a+ h,

hv -

1

Kp
<p(x)= <P(a)+ h<p'(a)+ - • +(jp_iy4>

p ’Ka)+ + Oh)

=^<j>*(.a+0h).
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Similarly

Hence

Now, if

If

If

Ltxsa{^x)-prh~°^ wa+eji)

=2! S&hkJ*-'.
pi \Jsi(a

)

p>q, Lth=oh»~9 =0.

p< ?, Lt^JiP-1 = oo

.

»-<7 Ztp-q, u
*^yfc)--yp(ay

V^)so that the limit is 0, or 00
»
according as p is > , =

,

or < q.

472. II. FokmJ) x x .

Let </>(a)= 0 and i/r(a)= x
,
so that <p(x)\Js(x) takes the form

Oxx when x approaches ond ultimately coincides with the

value a.

Then Ltx=a<p(x)xjr(x)= Ltx^J&,

and since

i4x)

— * —= -L=0,
>/r(a) X

the limit may be supposed to take the form and may be

treated like Form I.

Ex. 1. Ltn e cot e=Lt0 —L.«i.0~o 0=o tan 0 0=osec20

.a .n
am -

Ex. 2. Ltz^x sin -
a=Ltx=«>—r- ” ĵta

x 1 y=o a
,r

X
473. III. Form ^

.

Let <p(a)= oc
,

\/r(a)= oo , so that takes the form

when a: approaches indefinitely near the value a.

The artifice adopted in this case id to write

1
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11 11 '

Then since ~r? -\=—= 0, and -r
=— =0, we may consider

\Js(a) oo 0(a) oo
J

this as taking the form
jj,

and therefore we may apply the

preceding rule.

i_ >'(*)_

Ux=a^(xj~
Jj x=a

_1_
~ Ltx=a

4>'{x)

$(x) [0(a)]2

_ T W#)- Jjtx=a
\JRx)A *'<»)'

Therefore Tt [”Lt Q&YYLt1 heretore JAmm
\ftx)~ L

Ux^(x)J Ux
™$(x)'

Hence, unless Ltx--a-^\ be zero or infinite, we have
V'W

or Tf 00*') T± 0 (X)or
^

r^{x) Ux=a
^'{x)

If, however, Lt. „7r! be zero, then
y(x)

/, 0O«) +'/'(*)_-,
x=a ">(*) ’

and therefore, by the former case (the limit being neither zero

nor infinite), _ T ± </>'(&)+ ^'XX)

Hence, subtracting unity from each side,

Tx Tf 0 ClO
xma

^Kx)
Xma

i/(xy /

Finally, in the case in which

Ta 06*0 _ qq 77
x/

r(?)_ AUx=a
^(x)

~ ’ Ux=a
<f>(x)

~

and therefore by the last case

therefore

_r, £(*).~ ljtx=a
(p'(x) ’

Tt 4<®) - Tt *'(?)
X=a

tfx)~
X=a

yfr'(x)'

This result is therefore proved true in all cases.
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474. If any function become infinite for any finite value

of the independent variable
,
then all its differential coefficien ts

will also become infinite for the same value. An algebraical

function only becomes infinite by the vanishing of some factor

in the denominator. Now, the process of differentiating never,

removes such a factor, but raises it to a higher power in the

denominator. Hence all differential coefficients of the given

function will contain that vanishing factor in the denominator,

and will therefore become infinite when such a value is given

to the independent variable as will make that factor vanish.

It is obvious too that the circular functions which admit of

infinite values,*viz., tana?, cot a?, sec a;, cosec as, are really frac-

tional forms, and become infinite by. the vanishing of a sine or

cosine in the denominator,
and therefore these follow the same

rule as the above.

The rule is also true for the logarithmic function log(ce— a)
i

when x= a, or for the exponential function bx
' a when x= a,b

being supposed greater than unity

475. From the above remarks it will appear that if <p(a)

and \fs(a) become infinite so also in general will and

yjr\a). Hence at first sight it would appear that the formula

UX.JM is no better than the original form Ltx==a^}r~y But> («) W (h'(x)
it generally happens that the limit of the expression -yr

when x= a, can be more easily evaluated. ^

*
Ex. 1. Find Lta w r,

— which vt oj theform -•

tan 0 cc

Following tlie rule of differentiating numerator for new numerator, and

denominator for new denominator, we may write the above limit

v
0“?seca f.

which is still of tlie form — . But it can be written
00

# —It

a

ir

008 ^ (.which is of the form
7r V 0/

6
2

T . -2cos0sin0 A
.

=Lt
e-* 1

•For further discussion of this point the student is referred to Professor De

Morgan’s Diff. and Int. Calculus.
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Ex. 2. Evaluate Ltx^^ which is of theform

nxn~

n\ n\
LtXz* 00 • == =0.

« e
x oo

It is obvious that the same result is true when n is fractional.

Ex. 3. Evaluate Ltx~ox
m(\og x)n

,
m and n being positive.

This is of the form 0 x oo
,
but may be written

Ltx

I X « J

[F°m -”]

and by putting xn =e~v this expression is reduced to

LL,
/

-- -y|
n

o I ~~~m

j

=0 as in Ex. 2.

476. IV. Form oo — oo

.

Next, suppose <£(«,) = oo and i/r(a)=oo, so that (f>{x)— yfs(x)

takes* the form 00 — 00
,
when x approaches and ultimately

coincides with the value a.

Let u= 4>{x)- ^ -
1
1-

From this method of writing the expression it is obvious that

unless = 1 the limit of u becomes y]s(a) x (a quantity

which does not vanish)
;
and therefore the limit sought is 00 .

But if = 1, the problem is reduced to the evaluation

of an expression which takes the form oo x 0, a form which

has been already discussed (II.).

Ex. Ltx*»0^ COt^| —Ltx=0 '(1 X Cot X)

= lAx-

= Ltx *

i X — SC COS X /

X sill X \

which is of th » form ~
^

)

x sin^r /which is of the same
'sin r

4

-

x

cos x \ form still

ain x+x cos x
*
^ *~°2 cosx - x sin x ~~

477. Y. Forms 0°, oo°, 1".

Let y=u*, u and v being functions of as
;
then ,

log#=vlogei4.

Now log.l =0, log.oo = oo , loge0= — oo
;
and therefore when the
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expression uv takes one of the forms 0°, oo °, 1®, log y takes

the undetermined form 0 x oo . The rule is therefore to take

the logarithm and proceed as in Art. 472.

Ex. 1. Find Ltx-o3f> which takes the undeterminedform 0°.

1

i<l=0log^= Z<
Jt„0!2S£=Z<,.0-^- =Z,2X_0( -,r)=0,

x ~
.rr

whence Ltx^^f=e°= 1.

Ex. 2. Find Lt
x
^v(sin ^)

tanat
. This takes theform 1“.

Lt 7r(sin x)Unx=Lt n-e^iog-in*
*

and ft Trtan x log sin x— Lt ?== /,£ ^—~-~'c
X Y XV~Z cotx x ~2 — cosec*.?;

ft

— Lt ir(-8in #cos #) = (>,
at-*2

whence required limit == e°— 1.

A slightly different arrangement of the work is exemplified here.

478. The following example is worthy of notice, viz.,

Ltx -..a { 1 +*(«)}#»,

given that <p(a)= 0, \p(a)= <x>
,

Ltx=atp(x)\fr(ai)= m.

We can write the above in the form

1 -|0(^) . f(x)

which is clearly cm by Art. 20, Chap. I.

It will be observed that many examples take this form, such,

(

tan 0C/\
- —j

on p. 375, and Exs. 20 to 26 on

p. 376.

479. ^ of doubtful value at a Multiple Point.

Since ^=0 and = 0 at any multiple point on the curve
3® °y dv

u—0, it will be apparent that at -uch a point the value of^
as derived from the formula

df
dy = _dx
dx dtp

» Vy

will be of the undetermined form
jj.
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The rule of Art. 469 may be applied to find the true limiting

values of^ for such cases, but it is generally better to proceed

otherwise.

• If the multiple point be at the origin, the equations of the

tangents at that point can be at once written down by inspec-

tion and the required values of^ thus found.

If the multiple point be not at the origin, the equation of the

curve should be transformed to parallel axes through the mul-

tiple point and the problem is then solved as before.

Ex. Consider the value at the origin for the curve

x*+ ax2y+ bxy*+yA = 0.

The tangents at the origin are obviously

, x— 0, y= 0, ax+ by— 0,

making with the axis of x angles whose tangents are respectively

n a
0>

~b'

which are therefore the required values of

EXAMPLES.

Investigate the following limiting forms :

—

1 . Lix _0Y±~J?).
log COS X

2 . Ltxxl
2ar*- 3*2 +l
3

a

5 - 5ars + 2

1 - tai

*1 - sin x
3. Lt _,r l- tana!

. j-, 1+C0S7T*
4. Lt, •

tan-7rx

5. Llx„alog^-fyot(x-a).

6. LttJ°^C05x
.

l0
g.io*

C0S
|

7. Lt

cot 0 tan-1(m tan 0) - m cos2?

0**o . .,0
sm--

t
8. Ltx_0(cos*)

00*8'.

10. Ltx_0(log*)^-)

9. Lt
x^x(\

-

11. Lt
Axn + Bx*" 1 + Cxn~2 + ...

* axm + bxm
~ l + cxm~- + ...

according as n is >, = ,
or < m.
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12. 7i

i

being positive. 14.

13. Lt, ,

16. Lt,_,

.

17. Ltx„

/ax + 1 \
*

’W- 1/
’ 15. £^*0

{cot(45° -x)}cotr
.

i

a\ nr+ U2* + aR* + • • + an^

2a?2 - 2e®
3

+ 2 cos 4- sin-V

£t*
4

18. Lt J 1 + x

J 1 -»x

-J1 +i2

- v/

1

- .r-

19. /^.a'sin
£

ax
f (i.) If a be >*1.

|(ii.) If a bo <1.

20. Ltx 0

cosec x - cot x

x

21 . /,/

+ ax + xz - a,Vi+
- 0“

lo£ cos
*

X

a

a -x

e ° sin

22. Ltx-*
a a 2 \ aj

(3x 3x2 x°\~ l
n

\ a a*
+
a?)

- 1

23. U.J^- cot?)-

n* t ± Ja2 + ax+ K1 — Ja2 ~ ux + x~
24- ZW r :

;-• /— '

-f sc — — a?

25. 'Lt ^°g( 1 + x+ a?) +'log( 1 - x +_a'2
)

*’=0
sec a: - cos x

26. 7,^„^
sin(8in

J~
8in2a:

- 27. LtxJ l ±^Lj.

•
j

•

/i ,
w

,
tfsc ll^a;2

(i +*)*_„+ —

_

28. Ltx_, _J ii-.

29. *.-[<>
E.D.C. • 2b

X
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,0 r . (a - y)a" + (y - <t)a:" + (a - x)yn

’c~r^ (x — y)(y - a)(a — as)

[Put x=a+ h, y=a+k, and expand in powers of h and k, and

finally, after reduction, put h = 0, k— 0.]

' 31. ^ x +y-2
32. Show that generally

,
if a function of two independent variables

take one of the singular forms etc., for certain values of the vari-

ables, its value is truly indeterminate.

33. Given x* + y3 + «3 = 3axy,

find the values of^ when x= y= a.
ax

34. Find the values of^ at the origin for the curve
ax

xA + y
A — 3axy.

35. For the curve x2y
2 -

(
a 2 - y

2)(b + y)
2

find the values of^ at the point (0, - b).

ax

36. For the curve or* 4- ax2
y — ay2

find the values of
“ ,f/

when x — 0.
ax

37. Prove Ltx^*n .
- = log a.

a3
wsm x\ cos x - cos bx J \3/

38. Prove Lt

dn+lu
dx”*1

dxn~ l

=z 7)? — <1

where u = and x= sin y.
cos y

d2
y 0

39. Find Lt„ “ \ where y = -^— and 0 = cos
_1

(l -x).
0*°dx2 sm 0

40. If y = (sin
_1

fic)
2

,
prove that

dn+2
y

7 , fa”*2 2Ltz-<rk-= n -

dny
dxn

[I. C. S., 1884.]

41. Prove that Lt-
axm :V is zero or infinite according as n is

greater or less than m
,
a and b being both greater than unity.
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42. Prove Lt^Ji
-?J“

43. Prove = i“
(2 \a+ a:J jr

44. Find Ltx_0(cos ax)mK'hx
.

45. Find Lt
a*s[n bx ~ b%in ax

,

/(l) If *= 0.

tan 6a? - tan asc |(2) If a = 6.

46. Find Z< ** I l+i* T )
f

.

" (*2-l)»-*+l

47. Find Lt > ~ ~ «.

v/a;‘
2 - a2

48. Find Ztfx=0(cos a;)
cotiB

.

49. Prove that if, when a: is infinite, </>(«) = oo
, then will

and also that /.<_{/.(*)}*= f/Z-fo+l).

</>(«)

50.

Prove that Z«x

51. Prove Lt„

[Todhunter’s Diff. Calc.]

[Todhuntkr’s Diff. Calc.]

l
m +2w +3m +...+74m 1

#
,,<r I A

«* being positive.

52. Prove Z^o/i{am + a + Ji}
m + a + 2h\

m + ... + aT(n - l^)m
}

6W+1 - am+J

m+ 1

'where h =^ and a, 5 are any given quantities.



CHAPTER XV.

MAXIMA AND MINIMA—ONE INDEPENDENT

VARIABLE.

480. Elementary Methods.

Examples frequently occur in algebra and geometry in which

it is required to find whether any limitations exist to the

admissible values of certain functions for real values of the

variable or variables upon which they depend. These investi-

gations can sometimes be conducted in an elementary manner.

A few examples follow in illustration of this.

Ex. 1. The function x2 - 4u? + 9 may be written in the form

0 -^)2+ 5
,

from which it is at once apparent that the least admissible value of the

expression is 5, the value which it assumes when x—2. For the square

of a real quantity is essentially positive, and therefore any value of x other

than 2 will give a greater value than 5 to the expression considered.

Ex. 2. Investigate whether any limitation exists to the values of the

expression

for real values of x.

Putting

xl — .r -f-

1

x2 +x+\

x1 - .r+ 1_

x1+

x

+ 1'

we have #2
(1 —y) -x(l +y) + 1 -y= 0,

an equation whose roots are real only when

(l+y)*>4(l-y)*,

i.e., when (3y - 1)(3 -y) is positive ;

i.e., when y lies between the values 3 and J. It appears therefore that the

giveu expression always lies in value between 3 and £. Its maximum value

is therefore 3 and its minimum £.

38p
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Ex. 3. If a, 6, c, x
y y, z be all real quantities such that a2+&2+c* and

.r
2+y2+z2 are both given, then ax+by + cz will have its maximum value

For the identity

(a2+ 62+

c

2
)(#

2
-f v/~

+

zl)= (ax + by+ czf+ (bz - cyf+ (ex— az)2+ (ay - 6a?)2
*

shows that (ax+by+ cz)
2 will have its maximum value when the remaining

three squares on the right-hand side have their minimum values. And
being squares of real quantities they cannot be negative. Their minimum
is therefore Tvhen each separately vanishes, which gives the result stated.

Ex. 4. To determine geometrically the greatest triangle inscribed in a, given

ellipse. %

It is obvious from elementary considerations that if the ellipse be pro-

jected orthogonally into a circle a triangle of maximum area inscribed in

the given ellipse must project into a triangle of maximum area inscribed

in a circle
;
and such a triangle is equilateral and the tangent to the circle

at each angular point of the triangle is parallel to the opposite side. This

property of parallelism is a projective property, and therefore holds for a

maximum triangle inscribed in the given ellipse.

Mrt)inmTor Area of a maximize triangle inscribed in the ellipse

Area of ellipse

* Area of equilateral triangle inscribed in a circle
~ Area of the circle

47

r

Hence the area of the greatest triangle inscribed in an ellipse whose semi-

axes are a, b is
V3
4

ah.

Ex. 5. If A, B,C... be a number of lixed points and P any other point,

and if G be the centroid of masses \ at A, p at B, etc., then it is a geo-

metrical proposition that

&\PA 2)^VX.GA 2)+(2k) . PO*.

Hence, since -AGA* is a fixed quantity for all positions of P, 2\PA2 has

its minimum value when P is at G.

Ex. In any triangle the maximum value of cos A cos B cos C is J.

For 2 cos A cosB cos C—cos A(cosB—C— cos A ),

ancf therefore as long as B and C are unequal we may increase the expres-

sion by making them more nearly equal and keeping their sum constant.

Thus cos A cos B cos G does not attain its maximum value until

A=j3=C=%,
»3

and then its value =(£)3
.
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Examples.

1. Show algebraically that the expression xA- cannot lie between 2
X

and — 2 for real values of x. Illustrate this geometrically by tracing the

hyperbola xy—

x

2— l

.

^ ^— 4 ,f4’9
2. Prove that, if x be real, — - ‘ must lie between 5 and J.

x“t™t y

3. Show that, if x be real, —- • £+^ cannot lie between the values
x~a x -b

4. Show that the triangle of greatest area with given base and vertical

angle is isosceles.

5. If A, B be two given points on the same side of a given straight line

and P be a point in the line, then AP+BP will be least when .dPand BP
are equally inclined to the straight line.

6. Show that the triangle of least perimeter inscribable in a given

triangle is the pedal triangle.

7. Show that the greatest chord passing through a point of intersection

of two given circles is that which is drawn parallel to the line joining the

centres. t

8. Determine the maximum triangle of given species whose sides pass

through given points.

9. Find the least isosceles triangle which can be described about an

ellipse with its base parallel to one of the axes, and show that it has its

sides parallel to those of the greatest isosceles triangle which can be

inscribed in the same ellipse with its vertex at one extremity of the other

axis. [I. C. S., 1884.]

10. The diagonals of a maximum parallelogram inscribed in an ellqwe

are conjugate diameters of the ellipse.

11. If the sum of two varying positive quantities be constant, show that

their product is greatest when the quantities are equal. Extend this to

the case of any number of positive quantities.

12. If a2x*
-f b'

2
y
A—

c

4
,
find the maximum value of xy. [I. c. S., 1889.]

13. If A, B
,
C be the angular points of a triangle and Pany other point,

then AP+BP+CP will be a minimum when each of the angles at P is

120°. [AP is a normal to the ellipse with foci B, Cand passing through P.]

• 14. Find a point P within a triangle ABC such that .4P3+PP2+(7Pa

has a minimum value.

15. Prove from statical considerations, or otherwise, that ifP be a point

within a triangle, then

AP2tan A+BP2tan B+CP^n C
lias its minimum value when P is the orthocentre.
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16. If a triangle be inscribed in a circle of given radius R, show that

the maximum value of the sum of the squares of the sides is 9/P.

17. If 0+</>=const., the maximum value of sin 0sin </> is attained when

0=<f>.

18. Show trigonometrically that the greatest and least values of the

expression a sin .r 4* b cos a:

are Jar+b* and -Va1+ b'
1

.

19. Show by trigonometry that the greatest and least values of the

function a cos2#+

2

h sin 6 cos 0+ b sin2#
• __

are respectively ? ±\/ + h2.

20. Find the rectangle of maximum area whose sides pass through the

angular points of a given rectangle.

21. PSI*, QS(J are focal chords of a conic intersecting at right angles.

Find the positions of the chords when PP*+ Q(/ has a maximum or mini-

mum value.

The General Problem.

481. Suppose x to be any independent variable capable of

assuming any real value whatever, and let <p(x) be any given

function of x. Let the curve y = be represented in the

adjoining figure, and let A, B, C, D, ... bo those points on the

curve at which the tangent is parallel to one of the co-ordinate

axes.

Suppose an ordinate to travel from left to right along the axis

of x. Then it will be seen that as the ordinate passes such
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points as A , G, or E it ceases to increase and begins to decrease

;

whilst when it passes through Bt
D, or F it ceases to decrease

and begi/m to increase. At each of the former set of points

the ordinate is said to have a maximum value, whilst at the

latter it is said to have a minimum value.

482. Points of Inflexion.

On inspection of Fig. 113 it will be at once obvious that at

such points of inflexion as G or H, where the tangent is par-

allel to one of the co-ordinate axes, there is neither a maximum

Fig. 113.

nor a minimum ordinate. Near G, for instance, the ordinate

increases up to a certain value NG ,
and then as it passes

through G it continues to increase without any prior sensible

decrease.

This point may however be considered as a combination of

two such points as A and B in Fig. 112, the ordinate increasing

t Fig. 114.

up to a certain value N
xGXi then decreasing through an inde-

finitely small and negligible interval to JSf2G2,
and then increas-

ing again as shown in the magnified figure (Fig. 114), the

points Gv G2 being ultimately coincident.
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483. We are thusTSB to the following definition :

—

If, while the' independent variable x increases contin-

function dependent upon it, say increase

thrown any finite interval however small until x=a and
then decrease, <f>(a) is said to be a maximum value of <f>(x\

And if <J>(x) decrease to <p(a) and then increase
, both decrease

and. increase being through a finite interval
, then <f>(a) is said

to be a minimum value of <f>(x).

484. Criteria for the discrimination of Maxima and Minima
Values.

The criteria may be deduced at once from the aspect

of ^ as a rate-measurer. For is positive or negative

according as y is an increasing or a decreasing function! Now,
if y have a maximum value it is ceasing to increase and

d>ij

beginning to decrease, and therefore must be changing from

positive to negative; and if y have a .minimum value it is

ceasing to decrease and beginning to increase, and therefore

(In
must be changing from negative to jiositive. Moreover,

since a change from positive to negative, or vice versa
,
can

only occur by passing through one of the values zero or in-

finity, we must search for the maximum and minimum values

among those corresponding to the values of x given by <p\x)= 0

or by <p\x) = oo

.

485. Further, since must be increasing when it changes

from negative to positive, if not zero must then be positive
;

and similarly, when ^ changes from positive to negative

rnust.be negative, so we arrive at another form of the criterion

for maxima and minima values, viz., that there will be a maxi-

mum or minimum according as the value of x which makes
d2y . .

dx
zero or infinite, gives^ a negative or a positive sign.

486. Properties of Maxima and Minima Values. Criteria

obtained Geometrically.

The following statements will be obvious from the figures

112 and 113:—
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(a) According to the definition given in Art. 483, the term

maximum value does not mean the absolutely greatest nor

minimum the absolutely least value of the function discussed.

Moreover there may be several maxima values and several

rninima values of the same function, some greater and some

less than others, as in the case of the ordinates at A, B, C, ...

(Fig. 112).

(j8) Between two equal values of a function at least one

maximum or one minimum must lie

;

for whethe?’ the func-

tion be increasing or decreasing as it passes the value
[MX
P

x
in

Fig. 112] it must, if continuous, respectively decrease or increase

again at least once before it attains its origihal value, and

therefore must pass through at least one maximum or mini-

mum value in the interval.

(y) For a similar reason it is clear that between two maxima

at least one minimum must lie
;
and between two minima at

least one maximum must lie. In other words, maxima and

minima values must occur alternately. Thus we have a maxi-

mum at A
y
a minimum at B

t
a maximum at (7, etc.

(S) In the immediate neighbourhood of a maximum or mini-

mum ordinate two contiguous ordinates are equal, one on each

side of the maximum or minimum ordinate
;
and these may

be considered as ultimately coincident with the maximum or

minimum ordinate. Moreover as the ordinate is ceasing to

increase and beginning to decrease, its rate of variation is itself

in general an infinitesimal. This is expressed by saying that

at a maximum or minimum the function discussed has a

stationary value. This principle is of much use in the geo-

metrical treatment of maxima and minima problems.

(e) At all points, such as A, B, Ct 1)}
E, ..., at which maxima

and minima ordinates occur the tangent is parallel to one or

other of the co-ordinate axes. At points like A f B, C, D the

value of vanishes, whilst at the cuspidal points E, F
}

becomes infinite. The positions of maxima and minima ordin-

ates are therefore given by the roots of the equations

0'(a) = O
|= oo J

‘
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(f) That ^-=0, or ^=oo , are not in themselves sufficient

conditions for the existence of a maximum or minimum value

is clear from observing the points G, II of Fig. 113, at which

the tangent is parallel to one of the co-ordinate axes, but att

which the. ordinate has not a maximum or minimum value.

But in passing a maximum value of the ordinate the anglo yjr

which the tangent makes with OX changes from acute to

obtuse (Fig. 115), and therefore tan yfs, or changes from

positive to negative

;

while in passing a minimum value

changes from obtuse to acute (Fig. 116), and therefore ^
changes from negative to positive.

487. Working Rule.

We can therefore make the following rule for the detection

and discrimination of maxima and minima values. First find

^ and by equating it to zero find for what values of x it

vanishes ; also observe if any values of x will make it become

infinite. Then test for each of these values whether the sign

dy
of changes from + to — or from — to + as a; increases
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through that value. If the former be the case y has a maximum
value for that value of x

;
but if the latter, a minimum. If no

change of sign take place the point is a point of inflexion at

which the tangent is parallel to one of the co-ordinate axes;

9or, in some cases it may be more convenient to discriminate by

applying the test of Art. 485. Find the sign of corre-

sponding to the value of x under discussion. A positive sign

indicates aminimum value for y ;
a negative sign, a maximum.

(Jfiy
1

When this test fails and there is need of further inves-

tigation (Art. 488).

r
EXAMPLKS.

1 . Find the maximum and minimum values of y where

y=(.r -l)(x -2)2
.

Here
(i

;
v= (x - 2)-+ 2(x- 1

)(.v- 2)
•

, ax

=(u/-2)(:U-4).

Putting this expression —0 we obtain for the values of x which give

possible maxima or minima values

x— 2 and x=^-
3 *

To test these : we have

if x be a little less than 2, ^— ( - )( + )
~ negative,

if x be a little greater than 2, ’•(+ )“ positive.

Hence there is a change of sign, viz., from negative to positive as x passes

through the value 2, and therefore x~2 gives y a minimum, value.

Again, if x be a little less than - )(—

)

— positive,

and if x be a little greater than * ^=( — )(+)= negative,
3 ax

showing that there is a change of sign in viz., from positive to negative,

4
dx

and therefore x—- gives a maximum value for y.
o

Otherwise

:

so that when^ is put. =0 we obtain x—2 or
ax 3

And dy=6x-\0.

bo that, when x—2,
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a positive quantity, showing that, when #=2, y assumes a minimum value,

whilst, when .r=^, v^=-2,
3 d:v“

which is negative, showing that, for this value of x, y assumes a maximum
value.

2.

If

where n andp are positive integers, show that x—a gives neither maximum
nor minimum values of y, but that x—

b

gives a minimum.
It will be clearfrom this example that neither maxima nor minima values

ran arisefrom the vanishing of such factors of^ a* have even indices.

3.

Show that — has a maximum value when x~\ and a mini-
x - 10

mum when x= 1&

4.

If 2=^-1 )•(•»•.- 3)-\

show that #=0 gives a maximum value to y
and • .r=3 gives a minimum.

5. Find the maximum and minimum values of

2.rJ -15.r
,2+ 36tf+6.

6. Show that the expression
(.r-2)0r-3)2

has a maximum" value when and a minimum value when #=3.
• 3

7. Show that the expression
- #3-&e*+&r+3

has neither a maximum nor a minimum value.

8. Investigate the maximum and minimum values of the expression

3-r5 - 2&e*+GUr.
9. For a certain curve

d£=(x-\){x- 2)“(.c - 3)V - 4)« :

discuss the character of the curve at the-points x~ 1, x—2, a?=3, a?=4.

10. Find the positions of the maximum and minimum ordinates of the

curve for which 2)
8(2.r - 3)

4(3# - 4)
5(4.r — 5)

6
.

11. To show that a triangle of maximum area inscribed in any oval curve

is such that the tangent at each angular point is parallel to the opposite side.

If PfyIt be a maximum triangle ii rjbed in the oval, its vertex P lies

between the vertices L, M of two equ.d triangles LQR, MQR inscribed in

the oval. Now, the chord LM is parallel to QR and the tangent at P is

the limiting position of the chord LM, which proves the proposition.
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It follows that, if the oval be an ellipse, the medians of the triangle are

diameters of the curve, and therefore the centre of gravity of the triangle

is at the centre of the ellipse.

12. Show that the sides of a triangle of minimum area circumscribing any

oval curve are bisected at the points of contact ; and hence that, if the oval be

tin ellipse
,
the centre ofgravity of such a triangle coincides with the centre of

the ellipse.

Let ABC be a triangle of minimum area circumscribing the oval. Sup-

pose P the point of contact of BC. Let ABiCx> AB^C* be two equal

circumscribing triangles such that Bx Ci> B2C2 touch the oval at Pi9 1\ on

opposite sides of P and intersect in T. ‘Then

triangle TB VB^— triangle TCXC3

or \TBV . TB,sin BXTB^\TCX . TC&xix CX TC>.

If we bring 1\ and Pa nearer and nearer to P so as to entrap the minimum
triangle, the above equation ultimately becomes

T&=TC*\
and T being ultimately the point of contact P, the side BC is bisected at

its point of contact. The remainder follows as in Ex. 11.

13. To show that a triangle of maximum perimeter inscribed in any oval

is such that the tangent at any angular point makes equal angles with the

sides which meet at that point.
v

For, with Fig. 117, let PQR be a triangle of maximum perimeter in-

scribed in the oval ; its vertex P lies between the vertices Z, M of two

inscribed triangles Ltylt, MQR of equal perimeter. Now since

QL+LIt=QM+ Mlly

L and if* lie upon an ellipse whose foci are Q and R. When we proceed to
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the limit where L ami M approach indefinitely near P the curve and the

ellipse have the same tangent at P. Hence the result. Also if the oval

be an ellipse it is clear that the sides will touch a confocal.

14. If a triangle of minimum, perimeter circumscribe an oval
,
the points

of contact of the sides are also the points where they are touched by the e-circles

of the triangle. •

Let ABChs a triangle of minimum perimeter circumscribing an oval.

Suppose P the point of contact of BC. Let ABiCit A B>G> be two circum-

scribing triangles of equal perimeter such that BiClf B«C2 touch the curve

at Ph P» on opposite sides of P and intersect in T. Then
• B*Bi +BXGi—B2C2+ C2C\.

Let perpendiculars BLm( —y) and C\n{ = z) be drawn upon BfJ2, and let

B\TB'2— 0 an infinitesimal of the first order; y and z are therefore also

first order infinitesimals. The above equation then becomes

y cosec B2+(y+z)cosec 0~-y cotfyr - B>)+ (y + s)cot Q+z cot C2+

z

cosec (\

or [y cQt
g
2 “ 5 cot

^
2

)
sin ®+ (y+ *)(! *“ cw» 0)= 0.

Now 1— cos 0 is a second ord^r infinitesimal, and rejecting third and

higher orders we obtain

lJU

Now l/l. .JJhT.r t
BP
CP

Thus the side BC is divided at the pc nt of contact in the ratio

tan
^

tan -•
2

These points are the points of contact also with the escribed circles of the

triangle.
*

15. Tofind the path of a ray of light from a point A in one medium to a

point B in another medium, supposing the path to be such that the least

possible time is occupied in passing from A to B, and that the* velocity of

propagation of light changesfrom v to v’ on passing the boundary separating

the media.
,

[Fermat’s Problem.]
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We shall, for simplicity, consider A and B to lie in the plane of the

paper, and the separating surface of the media to be cylindrical with its

generators perpendicular to the plane of the paper.

Let OPP' be the section of the separating surface by the plane of the

paper, and let APB, AP*B be two contiguous paths from A to B. Then,

if the times in these two paths be equal, the quickest path lies between

them. Let fall perpendiculars P'n, Pn' from Pr upon AP and BP, and

draw the normal ZPZ' at the point P.

Then, .since the time in APB—time in AP'B
,

>r in the limit

AP PB AP
+
BP

c v' V V

Pn Pn
— ,

>

whence

v r

j
£\\\ n PZ'

. j t
Pn _ v

sin n PZ’ J*ri r'

and therefore, if in the limit the incident ray A /’and the refracted ray PB
make angles /,

/' respectively with the normal at P, we obtain
4

sin i _ v *

sin i'~v'*

thus proving .Snell’s well known law of refraction.

16. Another example of the power of this geometrical method is to be

found in the following dynamical problem.

To find the nature of the curve along which a particle can slide from one

given point to a second not in tltgftpamc vertical line
m
under the action ofgravity

in the shortest time.*

It may be taken as obvious that the path between any two points lies

entirely in the vertical plafie joining them.

Let A and B be two points of the path very near to each other. Let

APB, AP'B be two contiguous broken rectilineal paths, which may be

regarded as so short that the velocity through AP and Alv may be

regarded as constant and equal to that at A (v say), and that the veltbi-

ties in PB and PB are constant and equal to that at B (v
f

). And suppose
i

* W4l|}faouse, l8operimetrical Problems
,
referred to by Tait and Steel, Dynamics of a

Particle, App. C.
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that the points I\ F are in a horizontal line (P.v), and that the times down
these paths are equal. If Q be another point in Px such tliat the time
.down AQ, QB is a minimum, Q lies between P and F.

Constructing as in Ex. 15 we have in the same wav

voccosi/r, where yjr=AQx.

Now’ it is known from elementary

dynamics that v2 oc vertical distance

fallen through. Hence the curve is

such that the square of the distance

of the particle at any instant from

the horizontal through the starting-

point oc cos2i/r. Thus the path is

identified w’itli the cycloid, Arts.

31)4 and 307.
#

This curve has therefore been

called a Brachistochrone for parti-

cles sliding down it undf»r the action

of gravity.

17. Extend the results of Exam-
ples 11, 12, 13, 14 to polygons in-

scribed in or circumscribing an oval.

. 1 H, Show’ that the chord of a given curve which passes through a given

point and cuts off a maximum or minimum area is bisected at the point.

10. Find the area of the greatest triangle w hich can be inscribed in a

given parabolic segment having for its base the bounding chord of the

segment.

20. In any oval curvd the maximum or minimum chord which is normal

at one end is either a radius of curvature at that end, or normal at both ends.

21. In the axis of a given parabola and within the curve are taken two

fixed points P, Q ;
find the point on tlic curve at which the line PQ subtends

the greatest angle, and show that, if the semi-latus rectum is an Arithmetic

mean between the distances ofP
, Q from the vertex, the abscissa of the point

is to the geometric mean between the distances as 1
:

[Oxford, 1880 J

488.* Analytical Investigation. W:

We now proceed to investigate the conditions for the exist-

ence of maxima and minima values from a purely analytical

point of view.

It* appears from the definition given of maxima and minima

varies that as x increases or decreases from the value a through

any qpiall but finite interval h, if <p(x) be always less than 0(a),

then 0(a) is a maximum value of 0(x); and that if•<p(x) be

always greater than 0(a), then 0(a) is a minimum value of$x).

E.D.O. 2 c *
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We shall assume in the present article that none of the

derived functions we find it necessary to employ become in-

finite or discontinuous for the particular values discussed of the

independent variable. We then have by Lagrange’s modifica-

, tion of Taylor’s Theorem

and

</>(x+h)— = h<p!(x)+ gj
$"(&+ Oh)

h 2

<f>(x
— h)— <f)(x)= — h<j>'(x)+ - 6'h)

(A)

And when h is made sufficiently small the sign of the right-

hand side of each equation, and therefore also of the left-hand

side, is ultimately dependent upon that of /i0'(&), that being

the term of lowest degree in h.

Hence <f>(x+ li)— (f>(x)\

and <p(x— h) — 0(tf)J

have in general opposite signs

.

For a maximum or minimum value, however, it has been

explained above that these expressions must, when h is taken

small enough, have the same sign. It is therefore necessary

that <f){x) should vanish, so that the lowest terms of the right-

hand sides of the equations (a) should depend upon an even

power of h. <j>'(x)= Q is therefore an essential condition for

the occurrence of a maximum or minimum value. Let the roots

of this equation be a, 6, c, ....

Consider the root x=a.

Wo may now replace equations (a) by the two equations

<t>(a+ h)— 0(a)=
g ,

</>"(a)+

+

OJi)

It is obvious now as before that the term ^<p"(a)t being that

of lowest degree, governs the sign of the right and therefore

also of the left side of eaqh of equations (b)
;

i.e., in general the

signs of 0(a+ h) — 0(a)\

and <p(a—h)— <f>(a)f ®
_ «.

are the1 same as that of 0"(a). Hence if <f>"(a) be negative

</>(a+h) and <p(a—h) are both < 0(a), and therefore 0(a) is a
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maximum value of </>(x)
;

while if <p"(a) be positive both

<p(a+h) and are > 0(a), and therefore 0(a) is a

minimum value of 0(&).

But if it should happen that 0"(a) vanishes, equations (b) are

replaced by

^(a+/0-^(a)=|V>)+^V>+^)

<p(a—h)—<f>(a)

and therefore when h is sufficiently small

0(a+A)-0(a)j
• 0(a— A) — 0(a)/

are of opposite signs, and therefore there cannot be a maximum
or minimum value of 0(#) when x= a unless 0"'(c&) also vanish,

in which case the sign of the right side of each equation depends

upon that of 0""(a). And, as before, if this be negative we
have a maximum value and ifrpositive a minimum.

Similarly, if several successive differential coefficients vanish

when x is put equal to a, it appears that for a maximum or

minimum value it is essential that the first not vanishing

should bo of an even order
, and that if that differential co-

efficient be negative when x— a a maximum value of 0(a?)

is indicated, but if positive a minimum.

Examples.

1. Determine for what values of x the function

#e)=12^- 45^+ 40X3+

6

acquires maximum or minimum values.

Here </>'(#)= 60(.r4 - 3X3+ 2x2
).

Putting this =0 we obtain x=0, x=l
f
a =2.

Again </>"(#)= 60(4^ - O#2+ 4x).

If #=1, </>"(#) is negative and therefor* we have a maximum value; if

x=2, <P'(x) is positive and therefore this value of x gives a minimum value

for 0(#). If x=0}
vanishes, so we must proceed further.

Nqw 0"'(*)=6O(12^- l&r + 4),

which does not vanish when #=0, so x=Q gives neither a maximum nor

a Aiqimum.

2. Show that x=0 gives a maximum value, and x—l a minimum, for

the function ~
\ 3 2
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3. Show that #=0 gives a maximum and x—\ a minimum for

If
~~

4
*

4. Show that the expression sin30 cos 0 attains a maximum value when
0=60°.

* 5. Illustrate geometrically the statement of Art. 488 that in general

<ji(.v+h) - </>(.r) and </>(#- 4) - </>(.?’) arc of opposite sign.
,

6.

Show that the maximum value of

**
i8

4
.

(a2+#2
)
3 Si7(t4

7. If u—xm(a— #)“, the critical values are

.37= 0, .37= a, #= mti
.

Examine the several cases arising as m and n are odd or even.

8. If u—xj\ogx, prove that x—e gives a minimum.

9. If prove that the maximum and minimum are
(x-a)(x-b)

respectively and

(Compare Ex. 3, p. 390.)

10. Discuss the maxima and minima values of

cos mx cosm(a+ x)

.

11.

ABCDEFabcdcf is a right prism upon a regular hexagonal base.

The corners 1?, 2), F a.re cut off by planes through the lines AC
y
CEy EA

meeting in a point V on the axis VN of the prism, and intersecting Bb
y

Dd
y Ff respectively at X, Y

}
Z. It is plain that the volume of the ligure

thus formed is the same as that of the original prism with hexagonal ends.

For if the axis cut the hexagon ABCDEF in N, the volumes VNAC,
XBAC are clearly equal. It is required to determine the inclination of

the faces forming the trihedral solid angle at V to the axis so that the

surface of the figure may be a minimum.*

Let NVX—9
y

side of hexagon— a
y

Aa—h.

Then AC— 2a cos 30°— ajZ
and VX— a/sin 0.

Hence area of rhombus= VAXC= aV3/2sin 0.

* Gregory (Examples, page 106) makes the following interesting remark
“ This is the celebrated problem of the form of the cells of bees. Maraldi was the

first who measured the angles of the faces of the terminating solid angle, and he found

them to be 109° 28' and 70° 32' respectively. It occurred to Reaumur that this fnight

be the form, which, for the solid content, gives the minimum of surface, and he

requested Koenig to examine the question mathematically. That geometer confirmed

the conjecture ; the result of his calculations agreeing with Maraldi’s measurements

ewithin 2'. jVIadaurin and L’Huillier, by different methods, verified the preceding

result, excepting that they showed that the difference of 2' was due to an error in the

calculations of Koenig—not to a mistake on the part of the bees."
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Again area of AabX =?(2h - £VX cos 6)
2

=|(2A-“cot0).

Hence the total area=hexagon abcdef+ 3a(2/t - ^cot 6)+ 3tt%/3/2sin 6.
2 •

Differentiating,

d(Area)_ 3a2/__l _ </3 cos
Q

d$ ~~ 2 Vsin2# sin2# /

Hence cos#=
v 3

The change* of sign is evidently from

negative to positive as 9 increases through

cos- 1-*
;
hence tl^s angle gives the mini-

V3

mum surface.

12. A person being in a boat a miles

from the nearest point of the beach wishes

to reach as quickly as possible a point

b miles from that point along the shore.

The ratio of his rate of walking to his rate

of rowing is sec a. Prove that he should

land at a distance b - a cot a from the

place to be reached.

13. Find th<3 greatest cone that can be

inscribed in a given sphere.

V

Fig. 123.

14.

Find the cone of least surface which can be circumscribed about a

given sphere, and show that it is also the circumscribing cone of minimum
volume.

Implicit Functions.

489. In the case in which the quantity y,
whose maximum

and minimum values are the subject of investigation, appears

as an implicit function of xf and cannot readily be expressed

explicitly, wo may proceed as follows:

—

Let €he connecting relation betv^.eoi x and y be

y) = 0, (1 )

then (2)
dx dy dx v ’

• a

Now in searching for maxima and minima values of y those

valueS of x are critical which make^ zero or infinite. Thus

we should examine the cases for which 30 30 ,
-— or ^ change sign,

dx'
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Taking, for instance, the case of maxima or minima deduced

from the equations <f>(x, y)= 0}

*A=q \
(3)

3* J

• we can proceed to their discrimination as follows :

—

Differentiating equation (2) we have 4

av M4. jl /4\

daP^dxdy dx^ Xdxdij 'dy'
2 dx)dx~

r
'dy dx1 '

and, remembering that ^=0, this reduces to

(Z
2
?/ =

dx1

'dx2

d<f>

dy

.(5)

Substituting the values of # and derived from equations (3)
•

# d?y
we can test the sign of and thus discriminate between the

maxima and minima values.

The case in which this test fails, viz., when —® == 0 for the
ox

values of a? and y deduced by equations (3), is complicated

owing to the complex nature of the general formulae for

d*y
and

d4
y.

<M dx*

Ex. Find the maximum and minimum ordinates of the curve

J?+y*

Here - a;/)+(y1 -ax)'ty= 0, (1)

and
dy=0 gives x~=ay.
dx ,

Combining this with the equation to the curve we obtain

y*=2axy
;

t.e.y y=0 or y
3 =2a.r.

y=0 gives
t

^r=0,

whilst y=2a*|
give ' y*=4a3

!/,

and x~—ay J

which presents the additional solution
m

* y=«s/4,

x^al/3.



MAXIMA AND MINIMA. 407

Hence the points at which maxima or minima ordinates may exist have

for their co-ordinates (0, 0) and (a \j% a J/4).

Now
err-

and therefore at the point

and |^=3(y
2 -ax)y

02
<£

x—a lj2y

y=a Z/4,

_ 0^_ _ 2# -2a %/2 _
0<£ y'1—ax~2a2 j^/2 — a2 ^/2

~

?>y

and is negative, and therefore at this point y lias a maximum value.

At the point #=0, y— 0, the formulae for ^ and both become

indeterminate, ajjd we have to investigate their true values.

Differentiating equation (1) we have

And when x and y both vanish these give •

f=0 and
2

cm; cwr 3a

•showing that the ordinate y has for this point a minimum value.

Several Dependent Variables.

490. Suppose the quantity w, whose maxima and minima

values are the subject of investigation, to be a function of

n variables x, y, z
,
etc., but that by virtue of n— 1 relations

between them there is but one variable independent, say x .

We may now, from the ?t— 1 equations, theoretically find the

1 dependent variables y, 0, ... in terms of x, and suppose

that by substitution u is expressed as a function of the one

independent variable x. The methods of the preceding articles

can now be applied. It is often, however, inconvenient, even

if possible, actually to eliminate t ic n— 1 dependent variables

y, zy etc., and it is not necessary that this should be immediately

done.

Suppose, for instance, u= <f>(oa> y> z)

a function such as the one discussed, x the independent variable,

y aftd z dependent variables connected with x by the relations

F
1
(x,y,z)= 0, * .

F2
{Xy y, z)=0.
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Then putting =0 for a maximum or minimum, we have

dx

dx

3^ ety 30 jfe

dy dx dz dx ’
0 )

dy dx dz dx ’
•(2)

dF
2
dy dF

2 dz A
(3)

dy . dz

dx

30 d<t> 30
dx’" V 32

dFy 3F,

dx’ dy’ 32

dF
t
dF2 3F

2

dx’ dy’ 32

= 0, •W

an equation in x, y} z which, with v,= <f>(xt yt
z), F

1= Q and,

0, will serve to find x, y,
z and u.

Again, by differentiating equations (1), (2), (3), and elim-

. dy dz d2
y d2z , , , r d2u ,

mating we may deduce the value of
^

^

and

test its sign for the values of x, y}
z found.

Ex. A Norman window consists of a rectangle surmounted by a semi-

circle. Given the perimeter, show that, when the quantity of light

admitted is a maximum, the radius of the semicircle must equal the

height of the rectangle. [Todiiunter’s Diff. Calc., p. 214, Ex. 30.]

Let^ be the height and 2x the breadth of the rectangle, then the area

of the window is given by A— hrrx2+ 2.r?/,

and this is to be a maximum.

For the perimeter we have

P~ 2y+ 2x 4- 7r.v

—

constant.

Choose x to be the independent variable. Then we have, since A' is a

maximum, = ( » - irx + 2y + 2.r^>

and since P is constant =0=2^+2+7r.

dx dx
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Eliminating^ we have

7r.r+2y=x(7r+ 2),

or •-*-£
4’

and therefore the radius of the semicircle is equal to the height of th%

rectangle.

To test whether this result gives a maximum value to A we have

axz ax dx*

and

therefore

^= 0= 2^-
dx* dor

9

d*A
dx*

=7T+2(— 2-7r)= — 7T — 4,

and is therefore negative. *

Hence the relation found, viz., x=y, indicates a maximum value of the

area.

491. In the solution of such questions as the foregoing it is

frequently unnecessary to employ any test for the discrimina-

tion between the maxima and minima, since it is often suf-

ficiently obvious from geometrical or other considerations wb^ch
results give*the maxima values and which give the minimi,.

492. Function of a Function.

Suppose z--=f(x), where x is capable of assuming all possible

values, and let y= F{z); then it appears that since

the vanishing of either of the factors f(x) or F'(z) will give

(lit

^=0, and therefore y may have maxima or minima either for

solutions of F\z)= 0 or for such values of x as make f\x) = 0,

and which therefore make 0 a mu. imum or minimum. More-

over, if z be not capable of assuming all possible values, it may
happen that some of the roots of F'(z) = 0 are excluded by

reaspn of their not lying within the limits to which z is re-

stricted. Several such problems have been discussed at length

in tl*3 Cambridge Mathematical Journal, vol. III., p. 237.

Ex. 1. To find the maxima and minima values of the perpendicular from

the centre of an ellipse upon a tangent.
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If r and r' be conjugate semi-diameters, a and b the semi-axes, andp the

perpendicular from the centre on the tangent at the point whose radius

Vector is r, we have r2 +r'2=a2+b2
9

prf =ab
9

. . 02b2 q I ilo 0
giving —

-jT-
=a2+bM - r-,

Differentiating .with respect to r,

a2b2 dp=r
p3 dr *

and putting ^£=0,
dr

we obtain r— 0,

a result which is inadmissible, since r is restricted to lie between the limits

a and 6. It appears therefore a*t first sight as if the ordinary criteria had

failed to determine the true maxima and minima values of r. We should

remember, however, that since r is restricted to lie' between certain values

it will not do for an independent variable, and we should therefore have

substituted the value of r from the equation of the curve in terms of 0,

which is susceptible of all values and therefore suitable for an independent

variable. We should thus have

and the vanishing of
dr

dO

a2b2 dp dr

p*dO~
r
d0

’

indicates that the maximum and minimum values

of p are to be sought at the same values of 0 for which the maximum and

minimuhi values of r occur; i.e.
f
obviously when r—a and when r—b.

This result was of course apparent ah initio from the form of the relation

betweenp and r.

Ex. 2. The orbits of the eartli and Venus being assumed circular and

co-planar, to investigate in what position Venus appears brightest.

The brightness of a planet varies directly as the area of its phase, and

inversely as the square of the distance of the planet from the earth.

Let E and S be the earth and the sun and V the centre of VeniuJ, the

plane of the paper being the plane of motion. '

Let PVP\ QVQ' be diametral planes of the planet, perpendicular to the

lines EVand SV
9
and let ZVZ' be the diameter perpendicular to the plane
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of motion. Draw QN at right angles to PPf
. Let c be the planet’s radius

and x, a, r the lengths ofEV
y
ES, and S V respectively. The hemispherical

portion QPQ' is illuminated by the sun’s rays, whilst PQP' is the portion

exposed to view from the earth. The illuminated portion visible is there-

fore bounded by the line ZQZ’PZ> whose projection upon the plane PZP’Z*

is a crescent-shaped area bounded by a semicircle and a semi-ellipse, the

greatest breadth being PN

\

The area of this crescent is

Jttc
2 - \ttc . c cos NVQ, *

and therefore oc 1 - cos NVQ.
The brightness therefore

Now

whence brightness

1 - cos NVQ 1 + cos EVS
EV*~ EV*

co8 JE'ra=^
s
-^

>

,
'2—

,

2xr

^(x+rf-v
or 1 *r y-rf

Xs X X* xd

This expression has its maximum and minimum values,

(1) when x is a maximum or a minimum, i.c.,

when x—a+r :

(2) when

This second relation gives

1 4r ,*(r*-ar)

~x*^x3^ V
x2+ 4rx+

3

(r2 - a2
) — 0,

or .. x=*J%oP+r2— 2r,

the negative root being inadmissible.

We have now to inquire whether this value of x lies between the

greatest and least of the admissible values of x
y viz., a±r.

Now •JZar+'r— 2r>a — r

if r<a,

and J3a2+ r2 — 2r<a+r

if r>-»

For the inferior planets, Venus and Mercury, whose mean distances

from the sun are respectively 'la and *3 (Ja roughly, r obviously lies within

the prescribed limits. To distinguish between the maxima and minima,

we observe that when the earth and
,
*anet are in conjunction, i.e.

f
when

x=a-r, the brightness=0, and is obviously a minimum. Hence

x—s/3<i2+r 1 -2r

gives a maximum and x=a+r a minimum. It is easy to deduce hence

thaft, for the position of maximum brightness,

y
2 tanE=tan-~-

\ 2
an equation due to Halley, and •

3a cosSE+ 4r cosE- 4a= 0,
#

which determines the angle K [See Godpbat’s Astronomy, 2nd Ed., p. 287.]
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493. Other Maxima and Minima ; Singularities.

The accompanying figure (Fig. 125) is intended to illustrate

some points with regard to maxima and minima which we
have not at present considered. *

At S there is an asymptote parallel to the y-axis. The

curve y -=<p{x) approaches the asymptote at each side towards

the same extremity. Here y =-oo and^= oo
, but^ changes

sign in crossing the asymptote, and there is an infinite 'maxi-

mum ordinate at S.

At T there is another asymptote parallel to the y-axis, but

in crossing the asymptote the curve reappears at the opposite

extremity and ^ does not change sign
;

there is therefore

neither a maximum nor a minimum at T.

At M there is a “point saillant ” giving a discontinuity in

the value of . The ordinate at such a point is a maximum

or a minimum. In the case in the figure we have a maximum
ordinate.

At J3 the curve has a “ point d'arvet” and a maximum

ordinate, though ^ does not vanish or become infinite.

At N there is a cusp,
but ^ is neither zero nor infinite.

Yet the ovdinate at N is the smallest in its immediate neigh-

bourhood, and therefore a minimum. It is to be noticed,
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however, that in travelling along the branch MN the value of

x does not pass through OW, and therefore the ordinary theory

does not apply.

• dv
' At such points as Q, = °o and changes sign, and yet

obviously the value of y is not a maximum or minimum. As
in the last case, it should be observed that in travelling along

the branch NQR the value of x does not pass through the value

OV, but recedes to it from W to V and then increases again.

We notice, however, that this result may be written as
‘

dx .

dy

and that ^ ojianges sign at Q ,
indicating a maximum or

minimum value of the abscissa x. *

For further information upon this subject the student is

referred to Professor de Morgan’s Biff, arid Int. Calculus.

EXAMPLES.

1. Show algebraically that the greatest value of

• x(a - x)

is and illustrate the result geometrically.

2. Find algebraically the limits between which the expression

b
ax + -

x

must or must not lie for real values of x. Illustrate your result by

a sketch of the curve y -ax + -.
x

3. Investigate algebraically the maximum and minimum values of

. x2 - 4.r + 2
the expression — —r

2x - 7

for real values of x. Illustrate your i nswer geometrically.

4. Find for what values of x the expression

(a-l)4(a + 3)
5

has maximum or minimum values.

5. Investigate the maximum and minimum values of the expression

* 2a£ - 2lx2 + 60a?+ 30.
• •

6. Find the minimum ordinate and the point of inflexion on the

curve a3 - axy + bz = 0.
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7. Find the maximum and minimum ordinates of the curve

(y - Cf = (#- a)\x - b).

8. Show that the curve y-xe*

has a minimum ordinate where x = - 1.

9. Show that the values of x for which e*
Bin* has maximum or

minimum values may be determined graphically as the abscissae of

the points of intersection of the straight line

y~

with the curve of tangents y = tan x.

10. Show that the expression

a + (x - 6)3 -f (x - b)% *

has a minimum value when x'-= b.

11. Find the minimum value of

a2 &2

- + -

8inzX COS “03

12. Show that sinp0cos^

attains a maximum value when

^ tan_i

Vf'
13. Show that t]e is a maximum value of -

14. Show that the function

x sin x + cos x + cos2#

continually diminishes as x increases from 0 to ~.

15. If y = 2#-tan"
1#~log{# + v/l+#2

},

show that y continually increases as x changes from zero to positive

infinity. •

i a tp a2 62

x y

where # + 2/
= a,

show that z has a minimum value when

and a maximum when

«
, y_ 1—r i

— A i

a b
17. Given that
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show that the maximum value of xy is ~ and that the minimum
4

value of x2 +y2 is -^A
a*-f b2

18. Show that the area of the greatest rectangle inscribed in a'

given ellipse and having its sides parallel to the axes of the ellipse il

to that of the ellipse as 2 : ir.

19. Show that the maximum and minimum values of

x2 +y2
,

where ax2 + 2hxy 4- by2= 1

are given by the roots of the quadratic

kx*-s-"
Hcncc find the area of the conic denoted by the first equation.

20. Divide a given number a into two parts, such that the product

of the p
ih power of one and the 2

th power of the other shall be as

great as possible.

21. Show that if a number be divided into two factors, such that

Jhe sum of their squares is a minimum, the factors are each equal to

the square root of the given number.

22. Into how many equal parts must the number ne be divided

so that their continued product may be a maximum ;
n being a

positive integer and e the base of the Napierian Logarithms 1

23. What fraction exceeds its p
th power by the greatest number

possible ?

24. Given the length of an arc of a circle, find the radius of the

circle when the corresponding segment has a maximum or minimum
area. [Pappus Alexandrinus.]

25. The centres of two spheres, radii rv r
2 ,

are at the extremities

of a straight line of length 2a, on which a circle is described. Find

a point in the circumference from which the greatest amount of

spherical surface is visible.

26. In the line joining the centres of two spheres find a point

such that the sum of the spherical surfaces visible therefrom may be

a TnaVimytm, * [EDUCATIONAL TIMES.]

27^ A0 and BD are parallel straight lines, and AD is drawn.

Show, how to draw a straight line COE
,
cutting AD $nd BD in 0

and E respectively, so that the sum of the triangles EOD, COA may
be a minimum. [Viviani.]
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28. A person wishes to divide a triangular field into two equal

parts by a straight fence. Show how it is to be done so that the

fence may be of the least expense.

29. If four straight rods be freely hinged at their extremities the

greatest quadrilateral they can form is inscribable in a circle.

30. A tree in the form of a frustum of a cone is n feet long, and

its greater and less diameters are a and b feet respectively. Show

that the greatest beam of square section that can be cut out of it is

3(^-6)
feCtl°ng-

31. If the polar diameter of the earth bo to the equatorial as

229 : 230, show that tho greatest angle made by a body falling to

the earth with a perpendicular to the surface is about 14' 59", and

that the latitude is 45° 7' 29".

32. The resistance to a steamer’s motion in still water varies as

the nth power of the velocity. Find the rate at which the steamer

must be propelled against a tide running at a knots an hour so as to

consume the least amount of fuel in a given journey.

33. Show that the volume of the greatest cylinder which can

be inscribed in a cone of height b and semivertical angle a ik

-- 7r//
Jtan2a.

27

34. Show that tho height of the cone of greatest convex surface

which can be inscribed in a given sphere is to the radius of the

sphere as 4 : 3.

35. Two particles move uniformly along the axes of x and y with

velocities u and v respectively. They are initially at distances a and

b respectively from the origin, and the axes are inclined at an angle

<o. Show that the least distance between the particles is

(av - bu) sin <o

(u2 + v1 - 2uv cos ai)4
'

36. For a maximum or minimum parabola circumscribing a given

triangle ABC, show that the sum of the perpendiculars from ABC
upon the axis is algebraically zero.

37. In a submarine telegraph cable the speed of signalling varies

as jc
2log - where x is the ratio of tho radius of the core to thafcbf the

x » «'

covering/ Show that the greatest speed is attained when this ratio

is 1 : Je.
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38. A and B are fixed points and P is a variable point on a fixed

line ;
show that A . AP+ /* . BP will be a minimum if A cos 6 = p. cos <j>,

0 and 4> being the angles whfel? AP and BP make with the fixed line.

39. S is the focus of an ellipse of eccentricity e
,
and E is a fixed

point on the major axis, and P is any point on the curve. Show#
err

that when PE is a minimum SP—
e

40. Find the maximum value of

/ \2/ ja f(l) when a>b,
(x-anx-i),

(j2; whena<i
What happens if a=M Illustrate your answers by diagrams of the

curve i y — (x - a)2(x - b)

in the three different cases. , [I. C. S., 1879.]

41.

An open tank is to bo constructed with a square base and

vertical sides so as to contain a given quantity of water. Show that

the expense of lining it with lead will be least if the depth is made

half of the width. •

42. If two variables x and y are connected by the relation

ax2 + by2 = ab, show that the maximum and minimum values of

the function x2 + y
2 + xy will be the values of u given by the equation

• 4 (?/ - a)(u -b) — ab.

43. If SP and SQ be two focal distances in an ellipse inclined to

each other at the given angle 2a, find the greatest and least values

of the area of the triangle PSQ.

44. SQ is a focal radius vector in a given ellipse inclined at a given

angle a to SA, where A is the vertex nearest to the focus S. Find

the angle ASP
,
where SP is another focal radius, such that the^area

of the triangle PSQ may be a maximum.

45. Find the point P on the parabola y
2= 4aaj such that the

perpendicular on the tangent at P from a given point on the axis

distant Ji from the vertex may be the least possible. What is the

geometrical meaning of the result ?

46. Find the area and position of the maximum trianglo having a

given angle which can be inscribed in a given circle, and prove that

the ai$a cannot have a minimum value. .

47. From a fixed point A on the circumference of a circle of radius

c the )ierpendicular AY is let fall on the tangent at P. Prove that

the maximum area of the triangle APY is
9

m

2dX.D.C.
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48. If a parallelogram be inscribed in an ellipse the greatest

possible value of its perimeter is equal to twice the diagonal of the

rectangle described on the axes. *

49. 0 is a fixed point without a circle, A one of the extremities of

the diameter through 0, OQQ' a chord through 0. Find its position

when the area of the triangle QAQ is a maximum. Does it ever

become a minimum ?

50. A length l of wire is cut into two portions which are bent into

the shapes of a circle and a square respectively. Show that if the

sum.of the areas be the least possible the side of the square is double

the radius of the circle.

51. Obtain the maximum and minimum values of the volume of a

right circular cone whoso vertex is at a given point and whose base

is a plane section of a give* sphere
;
and point out the difference

of the cases of the point being within or without the sphere.

[Math. Tripos, 1876.]

52. Prove that a chord of constant inclination to the arc of a

closed curve divides the area most unequally when it is a chord of

curvature.

53. When the area of a triangle has a maximum or minimum
value and all the parts vary, then

cos A .da + cos B .db + cos C . dc = 0. {Oxford, 1888.]

54. Show that the normal chord to the parabola y
2 = \ax which

cuts off the least arc is normal where y = and is inclined

. 2 v**
to the axis at an angle tan “ 73"

55. When the product of two perpendicular radii vectores of a

curve is a maximum or a minimum, show that they make supple-

mentary angles with the tangents at their extremities.

56. Two perpendicular lines intersect on a parabola, one passing

through the focus. Show that the triangle formed by them with the

directrix has its least values when the focal distances of tlje right

angle and the vertex of the parabola include an angle of 36° or of

108°.

57. A plane triangle ABC
,
right-angled at B, and of given peri-

meter P, revolves either round an axis through A parallel to BC
,
or

round an axis through C parallel to BA, and the solid generated is a

maximum
;
show that the three sides of the triangle are equaHo

.

‘ - 3 + V17), |(5 - J17), £(7 - JV).

[Smith’s Prize, 1878.]
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Show that when the angle between the tangent to a curve

and the radius vector of the point of contact has a maximum or

minimum value the radius *of curvature at that point is given by

r2
59.

Show that the greatest distance which can be saved in a single

voyage by sailing along a great circle instead of a parallel of latitude,

2

where a is thb earth's radius. [Math. Tripos.]

60.

Show how to find the co-ordinates of the points on a curve

given in Cartes^ms at which the curvature is a maximum or a

minimum.



CHAPTER XVI.

MAXIMA AND MINIMA—SEVERAL INDEPENDENT
VARIABLES. t

494. Preliminary Algebraical Lemma.

The binary quadratic I
2 = ax2 + 2hxy + by2

may be written * [(a# +%)2 + (ah—

A

2
)?/

2
],

and therefore retains the same sign as a for all real values of x

and y if ab—k2 be positive.

The ternary quadratic

/3 ~ ax
2 + by2 + cz2 + 2fyz + 2gzx + 2hxy

may be written

~[(ax+hy+gzf+(ab- h?)y2+ 2(af—gh)yz+ (ac~g2)z2],

and therefore by what has gone before will retain the same

sign as a for all real values of x
. yt z

if ab— h2 and (ah— h2
)

(

ac—g2
)— (a/—gh)2 be positive,

i.e.
t

if ab—

A

2 and a(abc+2fgh— af2— bg2— ch2) be positive.

That is to say, J
2
and /

3
will both be positive if

a, a, h , a, h, g
h, b h, b, f

g> A o

be all positive, and will both be negative if these expressions

are alternately negative and positive.

495. These results may be generalized. For the general homogeneous

quadratic function of n variables can be thrown into the form

+ a&2+ 03.r3+ . . . + anxnf
t +Pi(X2+ b3^3 + . .. +KXnY T

• +pa(.ra + ...+ cn^n)
2

+ ...

+PnX**,
420
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since the number of arbitrary constants at our disposal is the same as the

number of coefficients of the original quantic. And it is a known proposi-

tion * that the values ofpiy piy ... , pn are

Pi=&li ^2=^,

where A, is the discriminant of the quantic obtained from the original*

function by putting #r+1 ,
.rr+2, ...» etc., all zero.

Now assuming that all the letters involved are real, it is clear that

if Aj, A2, A3j ... be all positive, we shall haveply p2y p3y ...,pn all positive,

and therefore
#
the quantic positive; and if A

t ,
A2,

A3, ... be alternately

negative and positive, ply p2y p3y
will all be negative, and hence the

quantic will also be negative.

For an inductiv^proof of this result the student is referred to a note at

the end of Dr. Williamson’s Treatise on the inferential Calculus.

496. To search for Maxima and Minima.

Def. Let <f>(x, y}
z, ...) be any function of several independent

variables x,yy zy ...
9
supposed continuous and finite for all values

of these variables in the neighbourhood of their values a, f>, c, ...

respectively. Then the value of b, c, ...) is said to be a

maximum or a minimum value of <p(x
y y, z, ...) according as

y>(a+h, b+k* c-f l, ...) is less or greater than $(a, 6, c, ...),

whatever be the relative values of the increments h, k, l, ...

,

positive or negative, provided they be taken sufficiently small

and be finite.

In other words, 0(a+/i, b+k, c+l, ...) — 6, c, ...) is to

preserve an invariable sign for all finite values of h, k, l, etc.,

lying between zero and certain small limits, positive or negative.

To find a, b, c, ... the values of x,y,z, ... which will make
b, ...) answer to the above definition we expand by the

extended form of Taylor’s theorem (Art. 178)

<j>{x+Ky+k, y, ...)

=A?^+A^+... + terms of the second and higher orders.
ox oy

Now by taking h, k, l, ... sufficiently small, the first degree

termS can be made to govern the sign of the right-hand side,

and therefore of the left side also, of the above equation;

therefore by changing the sign of h
y k,l, ... the sign of the left-

hand member would be changed. Hence as a first oondition

Burnside and Panton, Theory of Equations, p. 401.
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for a maximum .or minimum value we must have

*a*+j£*+£*+ -o

and therefore as these arbitrary increments are independent of

each other, we must have

00
dx

=o, 00
03?
= 0, etc. (1 )

If there be n independent variables, we have thuo obtained n
simultaneous equations which serve by their solution to find the

admissible values of x for which maxima and minima

values may exist.

The above equations therefore form essential conditions for

the existence of maxima and minima, but we shall see that

they are not in themselves sufficient, and we shall have to

employ a further test for their discrimination.

We shall now consider the cases of two and of three inde-

pendent variables separately.

Let one system of values of x, y, z . . . satisfying equations (1>)

be a, 6, c, ... respectively.

497. Case I. Two Independent Variables. The Lagrange-

Condition.

Let us put r, s, t for the values of when x= ar dx2 dxdy dy2

and y~b, then

0(a+A, b+lc)— (j>(a, b)=~
]

(rh2+2shk+tk2)+

R

3

where R3
consists of terms of the third and higher orders of

small quantities, and by taking h and k sufficiently small the

second degree terms now can be made to govern the sigh of the

right-hand side and therefore of the left also. And if these

terms be of permanent sign for all such values of h and k we
shall have a maximum or minimum for <p(x, yf ...) according as

that sign is negative or positive.

By our Lemma (Art. 494) the condition for an invariable

sign is that tr£—

s

2 shall be positive, and the sign will be feat of

r, and if rt—s2 be positive, it is clear that r and t must have

the same sign.
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Thus, if rt—

s

2 be positive, we have a maximum or minimum
according as r and t are both negative or both positive.

This condition was first pointed out by Lagrange (Turin

Memoirs) and is known as “ Lagrange’s Condition.”

If rt < s2
,
we get neither a maximum nor a minimum.

If however rt=s2
,
the quadratic terms

rh2+2shk+tk2 become hr+ks
)
2

and are therefore of the same sign as r or t unless

h s 0
ir~r=

In this case we must consider terms of higher degree in the

expansion of <f>(a+h, b+ k)— (/)(a
y
b). The cubic terms must

vanish collectively when
^
= /3; otherwise, by changing the

signs of both h and k we could change the gign !Jof

<J>(a+ h, 6+ t)— 0(a, b). And the biquadratic terms must

collectively be of the same sign as r and t when
^
=

498. In the case in which r, s, t are each of them zero, the

quadratic terms are altogether absent, and the cubic terms

would change sign with h and k, and therefore all the differen-

tial coefficients of the third order must vanish separately when
x= a and y = b and the biquadratic terms must be such that they

retain the same sign for all sufficiently small values of h , k.

Kx. Let

Hence

* V

Dm _ o
3_

dn a3

of'

giving x-y^a.

'd'hc __ 2a
3_ 2

d2u d2u
==
2a3

dxJ x3 9 dxdy 9

dy* y
z

So r*and t are positive when x—y—a
y

and . ,

n * =2. 2-1=3u

«

and is positive ; and therefore there is a minimum value of u,*viz.,

u*»3a\



424 CHAPTER XVI.

499. Geometrical Explanation.

Let the reader imagine that the plane of xy is the horizontal'

plane at the sea level, and that z— y) is the equation of

the surface of a mountainous tract of country in which there

are isolated hills, mountain chains, valleys, lakes and mountain

passes. Let a map be constructed showing the various contour

lines of the hills, lakes, etc., at different altitudes. Correspond-

ing to an isolated hill or a lake these contour lines will form

closed curves, dwindling to a point at the top of an isolated hill

or at the deepest point of a lake. At a saddle-shaped moun-

tain pass the contour lines at the highest poijit of the pass

will intersect and form a node while, corresponding to the

ridge of a chain of mountains of uniform height or the bottom

of a V-shaped depression of uniform depth in a lake, the closed

contour line degenerates into a single curved terminated line.

Again, at a bar across a valley, as at a mountain pass, the con-

tour lines form a node at the highest point of the bar.

Now at all these several places the tangent plane to the

country is horizontal and the preliminary conditions ^= 0/

^ = 0 are satisfied (Art. 496).

At the top of an isolated hill we have a true maximum
value of z

;
rt—s2 is positive whilst r and t are both negative.

At the deepest point of a lake we have a true minimum

;

rt—s* is positive whilst r and t are both positive.

At a mountain pass rt—s1
is negative, and although the tra-

veller over the pass arrives at a maximum height in the direction

in which he travels, yet if he diverge from the path either to

right or left he at once begins to ascend to higher ground.

This therefore is not a point of maximum height on the sur-

face. The same is true at the highest point of a bar separating

two depressed regions.

If rt—s2 then in the direction of hr+lcs—0 the tangents to

the contour lines through that point coincide. Further investi-

gation is now necessary. If the contour lines open out^and

separate immediately after their contact, there is neither a

maximum* nor a minimum; but if they dwindle down to a

single line all along their length, we have a row of what may
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be called maxima or minima. This is the case of a line along

the ridge of a mountain chain of uniform height or along the

bottom of a V-shaped depression of uniform depth
;
and a

person travelling along such a line will move continually at a

constant distance above or below the sea level. (See GreenhilUs

Diff. and Int. Calc.)

500. The effect of the variation in sign of rt - ,s
2 will be more easily

understood by the student of solid geometry. The equation giving the

principal radii of curvature at any point is

(rt- s
J

)p
2+ k{t( 1 +P1

)+K 1 + q
1
)
- 2pqs)}p+ lA= 0,

where +?+?, ?=|'*

Hence the principal radii of curvature arc of the same or of opposite sign

according as rt — s2 is positive or negative; and one of them is infinite

when rt-82— 0. In the latter case the corresponding line of curvature

has either an inflexional or an undulatory point.

501. A ridge of Maxima or Minima.

Suppose that ^ and contain a common factor v

*

Let

Then

dd>
r_=vw
dy 2

C)X

dd>

’ dv
,

dw.r.-w1+v-^.

dv
,
dw. - , dv dw>2

s== w.+ « \ and also = -*-*»

dy 1 dy 'dx
W^ V

dx
*

, dv
,

dWo
t=—Wo+ V--J-

dy 2 dy

So that for the values of x and y satisfying v=0we have

, 9 dv dv

Suppose we solve v= 0 and find y=f(x). Substituting this

in z=*<f>(xf y) we have z a function of x only and

dz __d(j> d<f> dy
(kcTdx^dy dx

which vanishes for such values as satisfy = and therefore

make =?#= ().

dx dy

Thus along a curve line on the surface, whose projection on

the plane of xy is v=0, z is constant. *

* Smich’a Solid Geometry, p. 218.
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This is the case of a locus of maxima or minima such, for

instance, as would be produced by the revolution round the

s-axis of any closed curve. The definition of maxima and

minima according to this view needs a slight modification, and

must suppose a maximum value to be one which is not less

than and a minimum to be one which is not greater than any

other value which is immediately contiguous to it.*

Ex. Consider the Anchor Ring or Tore formed by the revolution of a

circle of radius b about a straight line in its own plane at a distance a from

the centre. Taking the axis of revolution for the s-axis and the plane

through the centre perpendicular to the r-axis for the plane of xy, the

equation is

Here
ox

— a?-y*+ 2as/x*+y2
.

4

ax

jx2 +y'2

dy

(t 02 0£[

The vanishing of the common factor 1 - gives both - -and ~ =0,
Jtf+y* dx dy

and the cylinder x2 -\-y2=dl cuts the surface along .the ridge formed by
points which are all at the same distance b from the plane of xy and at

,

greater distance from that plane than any other points of the surface

which do not lie in that circular ridge.

502. Case II. Three Independent Variables.

Let a set of the values of x
y y, z determined from the equations

dx dy ~~
dz

be a
, 5, c, as explained in Art. 496. Let the corresponding

values of
ay ay ay #y sy
dx*’ dy*’ dz*’ dydz dzdx

be called A
,
B, G,

F, G,
H. Then we have

</>(a+h
,
b+lc, c+l)— (j>(a, b, c)

1

ay
dxdy

= 1C*+ Bk*+ Cl*+ 2Fkl+ 2Glh+ 2Hhlc)+ JS3,

where Rz
consists of terms of the third and higher orders of

small quantities, and by taking hf k, and l sufficiently small the

second degree terms can be made to govern the sign of the

right-hand si<Je and therefore of the left also. If this group of

terms form an expression of permanent sign for all such values

* See Franptit Annales de Gergonne
,
vol. III. Gregory’s Example*f p. 110.
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7

of h, k, and l, we shall have a maximum or minimum value

according as that sign is negative or positive. Hence by our

Lemma, Art. 494t if the expressions

A, A, H 1
, A f Hy 0

H
}
B ' Hy By F

Oy Fy C

be all positive, we shall have a minimum value of y, z), and

if they be alternately negative and positive we shall have a

maximum* whilst if these conditions are not satisfied we shall

in general have neither a maximum nor a minimum.

503. Similarly we might proceed by aid of the generaliza-

tion in Art. 495 to consider the. case of several independent

variables. And according to that article we shall have a

minimum when all the discriminants are positive and a maxi-

mum if they are alternately negative and positive.

504. Several Independent Variables. Lagrange’s Method of

Undetermined Multipliers.*

Let u= <j>(xv x2t ..., xn)f a function of n variables, which we
shall suppose connected by m equations

A(XV X2 , . .
- ,

= 0
, •••» ^n)— 0 . . . , fm{p^\y ®2>

* * • »
^

so that only n—

m

of the variables are independent.

Suppose the m dependent variables to have been eliminated

between the equation u= <j>(xv x2, ..., xn) and the m equations

of condition. The values of the remaining variables which

give maxima and minima can then be found as in Art. 496.

To avoid the absolute elimination we may make use' of

undetermined multipliers as follows:

—

When u is a maximum or minimum

etc.,

* Mieanique Aiialytique, vol. I.
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Multiplying these lines respectively by 1, \v X2 , ... Xm and

adding, we get a result which may be written

P
l
dx1+ P./lx,2+Psdxa+ . . .

+

Pndxn=0 (2)

wl^ere Pr=
r̂
+Xi2t

+X2S+-+Xm&
The m quantities \v X2 ,

• • • Xm are at our choice.

Let us choose them so as to satisfy the m linear equations

p =p =p _ _p —o
1
— ± 2— 3

••• — * m— #t

The above equation is now reduced to

P7H-f
"1“ -^m+2^'*^m+2 ~4“ • • “f~Pndxn~ b.

It is indifferent wliicli n—m of the ti variables are regarded

as independent. Let them be xm+ lt ..., #n . Then since

the —m quantities dxm+l , <

r

?.rm+2 , d#M are all independent

their coefficients must be separately zero.

Thus we obtain the additional n —m equations

Pm+1= A«+2=... = Pn= 0.

Thus the m+ 7i equations

./i
=

/a
=

/a
= • • = /»=

and P1==P2=P3
=...=Pn =(),

determine the m multipliers X1? X2 ,
Xm and values of the

n variables <r
2, *rn for which maxima and minima values

of u are possible.

505. If u be a homogeneous function of degree p,
and

fv fz> •••> /»» be capable of being put into the forms ua=A,
ub=B,

uc= C, ..., Uk=*K; uai ub,
etc., being homogeneous

expressions of degrees a, 6, etc., and J., P, etc. constants, there

is a very useful relation between the quantities X. Multiply-

ing the n equations of which Pr= 0 is a type by xv xn
and adding, we have by Euler's theorem on homogeneous

functions

• ... \m \vJcK=0.

Ex. Let us investigate the maximum and minimum radii vectores of

the section of the “ surface of elasticity ” *

{jo2-+f+ z*)2=a¥

+

by+cW
made by the plane ljr+my+nz= 0. •

We must ihake r*—xP+y+s2 a max. or min.

* Gregory’s Examples, p. 120, and Fresnel, Mtmoirm de I’Institut, vol. VII.
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Then xdx+ydy+ zdz=0 (1

)

a2xdx+b2ydy+c2zdz=*Q (2)

Idx -fmdy+ ndz=0 (3)

Whence multiplying (2) and (3) by Ai and A* and adding, we have by

Art. 504 a?+ A + \2l =0 J[4>

V+ A^hj 4- A3m =* 0 (5)

z+\
x
c2z + \tn =0 («)

Multiplying by x, y,
z respectively and adding,

• r® + Aj>
-4=0 or Aj— —

and two similar equations.

s
Whence multiplying by 1

,
m

,
and n and adding,

l2

>+ 0,

r- — r- c“ - r£

a quadratic which gives the values of r required.

EXAMPLES.

1. Discuss the maxima or minima values of u in the following

cases :— »
(a) u— x2

y2
( 1 — x—y).

(/?) u — + y
A — 2a*2 + 4xy — 2\y

2
.

(y) % = 2a2xy - 3ax2
*/ - ay3 + w'y + xy;<

.

(8) w — axy2z3 — x2
y
2z:i — xy2z2 — xy2zA

.

(c) w as* sin x’ sin 7/ sin(x’ + t/).

(f) u ~ x2
y

2 — 5x- — 8x7/ — by2
.

(tj) u — x2 + y'2 - 3axy.

2. Find the minimum value of

x2 + y
2 + s2

,

having given ax + by -

1

c? - p.

3. Find the maximum value of

xmy
nzp

with condition x + y + z = a.

*4. In a plane triangle find the maximum value of

cos A cos B cos G.

4i. Find a plane triangle such that

sin
w
J. sin”2? sin p6r

has a maximum value.
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6. Divide a number n into three parts x
, y, z such that

ayz + bzx -f cxy

shall have a maximum or minimum value and determine which it is.

7. Find the maximum or minimum values of

r x2
/a

4 + y
2
jb

4 + z2jc4

when lx + my + nz-0 and x2ja2 + y
2/b2 + z2jc2 = 1. [Oxford, 1888.]

8. Inscribe in an ellipsoid the maximum rectangular parallelo-

piped.

9. Given axbvc*= A, find the maximum value of

(x+ l)(y + l)(z+l).

Interpret the result. [Waring.]

10. Required the rectangular parallelopiped of given volume and

least surface.

11. Find the minimum value of x2 + y2 + z2

with the conditions ax + by + cz = ax + b'y + c'z = 1.

1 2. Find the maxima and minima of x2 + y2 + z2
4

subject to the following conditions :

—

(1) ax2 + by2 + cz2 ^l.

(2) ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy = 1.

ax2 + by2 + cz2 ~ 1

[ and lx + my + nz = 0.

ax1 + by1 + cz2 + 2fyz + 2gzx + 2hxy = 1

[and lx + my + nz = 0.

13. Find the maximum or minimum of axp + byq + cz
r

with the condition xl + y
m + zn -k.

14. Find the maximum value of

xyz/(a + x)(x + y)(y + z)(z + b). [Lagrange.]

15. Find the minimum value of

x2+y2 + z2 -h w2 + ...

with condition ax + by + cz + dw + . . . = k.

16. Show that the point within a triangle for which the sum of

the squares of its perpendicular distances from the sides is least is

the centre of the Cosine-Circle.

(4)
{.

17. Find a point within a triangle such that the sum of the

squares on its distances from the three angles is a minimum.

18. Find a point within a triangle such that the sum of the

distances from the angular points may be a minimum. [Fermat.]

19. Findithe triangular pyramid of given base and altitude which

has the least surface. [Gregory’s Examples.]
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20. Find the minimum value of the continued" product of the

perpendiculars drawn from a point upon the faces of a given poly-

,

hedron. [Coll. Exam.]

21. If a be a maximum or a minimum value of/(ar, y, z) for points

which lie on F(x
, y, z) = 0, then the surfaces /(

x

, y, z) » a qgd

F(x, y, z) = 0 will touch. [Coll. Exam.]

22. Find the maximum and minimum values of p where

rx2 + 2sxy + ty2 = k/p
,

having given that

(1 +p
2)x2 + 2pqxy + (1 + q

2
)y

2 = 1

.

23. If there are tops of mountains on the earth and q bottoms of

lakes and seas,*prove that there must be p - 1 passes, or places where

a level surface drawn through the point cuts off two elevated regions

which meet at that point ;
and also q - 1 bars, or places where the

level surface cuts off two depressed regions which meet at that point.

Show also that there must be at least two summits higher than any

pass, and two bottoms lower than any bar. [Math. Tempos, 1870.]

24. A framework crossed or uncrossed is formed of two unequal

rods joined together at their ends by two equal rods
;
prove that the

• distance between the middle points of either pair of rods is a maxi-

mum when the unequal rods are parallel and a minimum when the

equal rods are parallel
;
unless the two unequal rods are together

less than the two equal rods, in which case the unequal rods are

parallel in both the maximum and minimum positions.

[Math. Tripos, 1875.]

25. If u be a function of n independent variables xv x
2 , ..., xn,

prove that, in order that u may have maximum or minimum values,

the roots of the equation

U
x
-e, M

12> ' uJn

'12» U,-z, . • • i
Utin

**!«> “an, Un~'‘

must all be of the same sign; denoting the particular values

of ,-
2~

, for certain values of xv x<1% ..., xn which make
dx 2 oxroxt

du Zu dii
__ o

dxj dx
2

dxn [Math. Tripos, 1873.]
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ELIMINATION.

506. Construction of a Differential Equation.
'

It has been seen that the equation

f(x, y, a)= 0 (1)

is representative of a certain family of curves, for each

individual of which the constant a receives a particular and

definite value, the same for the same curve but different for

different curves of the family.

Problems sometimes occur in which it is necessary to treat’

of the whole family of curves together, as for ‘instance in

finding the family of curves which intersect each curve of the

first system at right angles. And it is manifest that for such

operations the lettei a ought not to appear as a constant in

the functions operated upon, otherwise we should be treating

one individual curve of the system instead of the whole

collectively.

Now the process of differentiation can be easily applied to

get rid of a. For by differentiation with regard to x, we have

dl+'df: dy= 0
dx oy dx *

— (2)

and a may be eliminated between these two equations, if

indeed it has not already disappeared. There will now result

an equation between
, dy“d©

.
t r

which may be called the Differential Equation of the family of

curves.
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For example, consider the family of straight lines obtained by giving

special values to the arbitrary constant m in the equation

y—mx.

Differentiating,
dx

and therefore
dy
dx1

a differential equation which is true for each member of the family since

the m has been eliminated.

It is clear that the m would have disappeared at once upon differentia-

tion if we lmd written the equation of the line

dy
X
fx~V

for, differentiating, we have -—= O',

or
dx

as before.

This is then the differential equation of all straight lines passing through

the origin and expresses the geometrical fact that the direction of the

straight line is the same as that of the vectorfrom the origin at all points of

the same line.

507. Again, suppose the representative equation of the family

of curves to be f(x, yf a , b) = 0,

containing two arbitrary constants a, b whose values particu-

larize the several members of the family.

Now a single differentiation with respect to x will either

cause one of the constants to disappear or will result in a

relation between x, ?/, a and b.

From this relation and the original equation of the curve one

of the two arbitrary constants may be eliminated, say a.

Then, we have a result of the form

If we again differentiate with respect to x, we shall either

cause the b to disappear or shall be able to eliminate b between

the result and the last equation, thus obtaining a differential

equation of the second order between

- v
dt and

cpy ’ *

J’ dx’ dx2
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Thus if a function with one independent variable contains

•one arbitrary constant, the result of eliminating it is a differ-

ential equation of the first order. If it contain two arbitrary

constants, the result is a differential equation of the second

order. And our argument is general
;
so that to eliminate n

arbitrary constants we shall have to proceed to n differentia-

tions, and the result is a differential equation connecting

dy dny
,y’dx’ "" dxn

'

and is therefore of the nth order.

Again, the final result is independent of the order and of the

manner in which the eliminations are effected.

For suppose the arbitrary constants to be

av . .
. ,
anf

and let any particular values be assigned to these constants.

Then we have made choice of some particular curve of the

system. ‘Next take any value oi x\ at the points thus deter-

mined
d/ii

,

have each definite values dependent

upon the chosen values of x
,
av a2 , ... , any

thus fixing the inclination of the tangent to the axis of x t
the

measure of curvature, and peculiarities of shape of a higher

order at the point in question. These peculiarities of shape

intrinsically belong to the chosen curve, and cannot be de-

pendent upon any particular algebraic process which it may
be found necessary to employ in obtaining a numerical measure

of them, but must depend solely upon the geometrical character

of the curve. Hence, if for the whole family any general

algebraic identity be discovered connecting these peculiarities,

in which none of the particularizing constants are present, and

which is therefore true at any point of any member of the

family, it must amount to a statement of some geometrical

property characteristic of the family, and be independent of

the method of its discovery. And in obtaining the n differential

coefficients of y with regard to x we have in all ti+ 1 equations,

including that of the original curve, with n arbitrary constants

to eliminate, having one single relation between

x v in iy,y, dx dx»'
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Ex. 1. Form the general differential equation of all straight lines.

The general equation of a straight line is

y=mx+ c.

Hence yt
=«i, (1)

and #2
5=0

l&)

Equation (2) evidently then is the general differential equation sought

Its geometrical interpretation is clearly that the curvature vanishes at

every point of each member of the family.

Ex. 2. Eliminate a and c from the equation

.r
a+y2=2ax+c.

Differentiating, x+yyi=a.

Differentiating again, 1 +y1
a
+yy-j= 0.

This is the differential equation of all
t
circles whose centres lie on the

.r-axis.

Ex. 3. Eliminate a
,
b

,
and c from the equation

(#-a)2+(y-&)2=c2

and thus form the general diffeiential equation of all circles.
#

We may write this equation

or+

y

2= 2a.r

+

2by+ <r - dr - b\

Differentiating three times We have the results

*+yyi=<*+i”ji,

\+yi+yy-t =by.u

32/102+m=h»
Eliminating b between the last two results

(3yiy2+»t)y2= (1 +!/i
i
+/pjJ>/3,

"r (1 +y\)&3=3!hyi
1
.

Referring to the result of Ex. 38, p. 110, the geometrical meaning of this

equation is plainly that the aberrancy of curvature vanishes at any point

of any circle.

Ex. 4. To eliminate the constants from the equation of the general.conic.

Let the conic be ax1+ 2hxy+ by1+ 2gx+ 2fy+ c= 0.

We have by differentiating

ax+hlM^+y) byyi+g+fy^O (1)

a+ h(pcy2+ 2yj)+ &tyya 4-yi
3
) +fy2=0 (2)

h(xy3+ 3ya)+ 6(yy3+ 3yiya)+/y3=0 (3)

. hfry*

+

4y3)+%y4+4^+3y2
s
) +fy,=0 (4)

/»(•%

+

fy*)+%y

s

+ fyiVi+ Ity*?*)+#»=

0

(5)

From
#the last three equations

*yi+3y* m+tytf* > y»

^«+4y» m+fyiVa+tyi* . y«

«yi+fyi, yyt+tyiyi+ioy>ys> y*
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which immediately reduces to

3y2, 0 , y3 =0,

fy* Itys, 2/&

or
« 9.V2V5 - + 40y3

8 =0.

This general differential equation of all conics was discovered by Monge.

Dr. Boole, in his Differential Equations
} p. 20, remarked :

“ But here our

powers of geometrical interpretation fail, and results such as this can

scarcely be otherwise useful than as a registry of integrable forms.” A
remarkable interpretation which calls for notice has however b^en recently

offered by Mr. A. Mukliopadhyay, who has observed that the expression

for the radius of curvature of the locus of the centre of the conic of five

pointic contact with any curve (called the centre of abeirancy) contains

as a factor the left-hand member of Monge’s equation, and this differential

equation therefore expresses that the “ radius of curvature of the ‘ curve of

aberrancy 1

vanishes for any point of any conic.” *

Examples.

1. Eliminate a from the equation

y
l— Aax.

2. Eliminate a and b from the equation

*? , y
2_

,

d-v*
3. Eliminate a and b from r— a+ b cos 6.

4. Form the general differential equation of all parabolas whose axes

are parallel to the axis of y.

5. Eliminate a and b from the equation

y=aenx
-\-b(r 1K(

.

6. Eliminate a and b from the equation

y=a sin(7fcr+6).

508. Elimination of Functions of Known Form.

We have already met with examples of elimination of

various functions of known form from given equations by

means of differentiation. For example, we found that if

y= tan ~ lx,

the function tan" 1 was eliminated by simply differentiating,

giving the result (1

+

x2
)yx
= 1.

And again, frpm the equation 1

' j^sinm^in" 1
#)

* Journal of the Asiatic Society of Bengal, vol. LVIII. Part I.
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we eliminated the circular and inverse functions sin and sin* 1
,

obtaining the differential equation

(1 - x2
)y2= xyx-m2

y. (Art. 1 22.)

These were both made use of when series in ascending

powers of x were required for tan** 1# and sinm(sin* 1
a;) respec-

tively. And it was seen that such differential equations are

frequently useful in the expansion of certain classes of func-

tions. But the chief interest in the processes by which, by

differentiation and elimination, the differential equation is

formed from its primitive equation rests in the light which

they throw
#
upon the converse problem of obtaining the

primitive equation of the typical member when the differential

equation of the family is given. * This problem presents itself

in numberless investigations and is the subject of special

consideration in works on Differential Equations.

Ex. 1. Eliminate the constant a and the logarithmic function from

y= a log x.

Here y {
= -
x

and • .r//] = a.

Differentiating again y, +xy.2~ 0.

Ex. 2. Eliminate a, and the exponential and inverse circular functions

from y— aemxs\ 11~Vr.

Here y x
— amevnxsin

~ lx 4- aemx - -
v 1 -x1

1 x
and — cmV”*sin ~ lx 4- "lame™* - - - + aemx — -

•j 1 -3?
( i-^*

i.e., y-i= ni-y + 2m {yl - my)+
^

~ ™y)

or
9

(l- xr)y2=

{

2m( 1 — x2
) 4-^v/i — nry - mxy 4* vnPx^y.

Examples.

1. From the equation y=.jr\ogx

elfminate the logarithmic function.

2. Given y= eatau
"

1

*,

eliminate the exponential and inverse functions.

3. Given the equation y=cos(log x),

eliminate the circular and logarithmic functions.
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509. Genesis of Partial Differential Equations.

When more than one independent variable enters into our

primitive equations, partial differential coefficients occur upon

differentiation. A differential equation containing partial

differential coefficients is styled a “partial differential equa-

tion ” in distinction from an “ ordinary differential equation
”

in which there is but one independent variable.

In Chapter VI. we proved Euler’s Theorem, that if

n —

we have
3a bn

,

bn
,

+y^ +z -—b ... =nu,
bx ° ay c)z

ti

thus eliminating a function of perfectly arbitrary form.

We shall give other examples of elimination of arbitrary

functions of unknown form obtaining as a final result in each

case a partial differential equation.

When ‘only three variables x, y, z occur, two being inde-

pendent, it is usual to take z for the dependent variable, and

to use the abbreviations p, q,
r, &, t to denote the partial

differential coefficients

bz bz cPz b2z b*z

bx3

by* bx2,1 bxby’ by*
respectively. (Art. 170.)

Ex. I. Eliminate the arbitrary function
<f>
from the equation

z=<f>(ax+by).

Here p= a<f>{ax + by),

q^b<}>\ax+by),

.*. bp -aq— 0,

the partial differential equation required.

Ex. 2. Eliminate the arbitrary functions <j> and yjr from the equation

*=W>(|)+yfM-

<-y<n
X \x /

Here
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Hence z-px-qy— — xyty\x\
Also xs+yt=anjr\x)

f

z-px-qy+xya+y
2
t=* 0,

a partial differential equation of the second order.

1. If

prove

2. If

prove

3. If

prove

4. If

prove

Examples.

z— $(y+ ax)+ yj/{y - ax),

r - aH= 0.

r=(.r+y)0(^-y2
),

z~py+ qx.

*=/(y)+<W4
ps-qr— 0.

2= x<jj(ax +• 6?/) -\*y\jr(ax+ fry),

6V - 2a6s -f

a

2
f= 0.

510. Prop, i/ u and v be explicit functions of x and y, and

if u be a function of v, then will

du dv _Jdu dv _ ^

.

dx dy dy' dx
9

and conversely , if this relation be identically satisfied, u will

be a function of v*

For if u—F(v\

we have

*

and

:=F'(v)
dv

dx

T=F'(v)
d”

dy ' dy

and therefore eliminating F\v\

du dv __
dll dv _ Q

* dxdy dy' dx

Conversely, suppose this condition satisfied, then will u be a

function of v .

For since u and v are known functions of x and yt
we may

eliminate one of these letters, say y. Then, unless x is Simula •

taneously eliminated, we obtain a relation of the form

• • u=f(v i
x).

* Boole, Differential Equations
, p. 24.
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Now du_ df ‘dv.df
dx dv' dx dx’

du_df dv

dy dv ’ dy

du dv _du dv _df dv

dx dy dy ' dx dx ' dy

Hence
df .^=0
dx dy

’

i.c., either
dv p. df A
. = 0, or -1- = 0.
dy dx

df ®

If - •1 = 0, f(v, x) is independent of x, and therefore u is a
ox ' dv

function of v. And ^ cannot in general vanish, since v in-

volves usually both x and y.

dv
If, however, v be a function of x alone, ^ = 0. If also u be

* dy du
a function of v. u is a function of x alone, and - - = 0: hence

Vy
in this case the relation

du dv du df) _ q
dx' dy dy ‘ dx

is satisfied. And conversely, if this relation be identically

satisfied, and if^ = 0, we must have
dy

du dv %

dy 'dx
’

and therefore u must be independent of y, since we cannot

assume v independent of x as well as of y . Hence, as u and v

are both functions of the same variable, it is obvious that by
eliminating it we can express u as a function of v.

Examples.

1. If «=f±£ and
\-xy (1 +^)(1 +y)

prove that uxvy=uvvxi

and interpret this result.
*

2. If ttp^l -y2+yVi and v—xy—sll —x\f
\ — y*,

prove that u is a function of v.
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3. If u and v be explicit functions of three variables .r, y9
zt and if u be

a function of v, prove that
‘

Uz 1=0.

511. Next suppose u a known function of x
, yt and zt and

that </>(u) is .an arbitrary function of u. We shall show how
to eliminate the arbitrary function from an equation of

the form f{x, yf zf = 0 (1)

Supposing x and y to be the independent variables, we have

by differentiating

dx^^dz^duKdxT^dzJ
|

3/, 3wN .A'

dv
+q

dz
+
du\dy +q dz

=W
J

Hence, eliminating J ,

CM

df Vw
OZ dx

df dll

=<>

V/ . / vw . vw

dy+qdz‘ dy+ qdz

an equation containing x, y %
z

, p, g and 0(t&)
;
^(u) disappear-

ing on the elimination of Hence, if </>(u) be eliminated

between equations (1) and (3), we shall obtain a partial

differential equation of the first order between x% y, z, p and g.

512. Suppose u
x
and u

2
known functions of x

t yt
and z,

and 01
(u

1), 02(u2) arbitrary functions of ux
and u2. We shall

now show how the two arbitrary functions and ^2
(w

2)

may be eliminated from an equation of the form

* /{*, y, z, 0i(«i *• tfa) }

=

0 .

If we form the equations

fx= »

we introduce the two new functions

0 2(^2)-

Proceeding to differentiations of the second order, we have the

three additional equations •

fxa == 0i fxy == 0,
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introducing again two new unknown functions

faXui) and </>2
"(u

2).

We now have in all six equations with six quantities to

eliminate. It is therefore in general necessary to proceed to

differentiations of the third order, thereby obtaining the four

new equations

fxxx= — fxyy— Qf fyyy~

and introducing at the same time the two additional unknown

functions

We now have ten equations with eight unknown functions

to eliminate, leaving in general two independent resulting

partial differential equations of the third order.

513. Generally, suppose an equation given of the form

§
/{#» failli), 02O*2), ..., </>n(un)}=.0,

containing p+ 1 variables, of which p are independent, and

n arbitrary functions ^(^X </>n(un) of the n known
functions uv u2 , ..., un \

to eliminate the n arbitrary functions.

•

Suppose t the dependent variable
;
then forming all differential

coefficients up to those of the rth order inclusive, we have

(a) */=0 ;
one equation.

(/3) /*= 0, fy= (),
. p equations.

(y) /**=0, /*,=(>, /*= «, equations.

[being the number of homogeneous products ofp things

,
of two dimensions]

(k) and proceeding to r differentiations
;

*

M£+lXp+2) ,:,(P+r-.l) equation

making in all

i •

containing partial differential coefficients up to those of the

r1* order inclusive.
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The sum of this series is the coefficient of xr in the product

of the series for (1 — a;)-* and (1— a?)- 1

=coefficient of xr in (1—o^-Oh-1)

sm(S±}XP+ ?) - (y+r)= (y>+ r)!

r! 7"!
’ •

We have therefore thus obtained equations, containing

differential coefficients up to those of the rih order.

MoreoveV, there are (r+l)n functions to eliminate, viz.,

4>V 02» •••* <f>n>
originally;01» *p2>

5*01 dfc
dUj du

2

’

llu>n

dr
i>

,

dr
<f>n

rf«,’
"

Hence, we must in general go on forming all differential

coefficients of the primitive function until

— is first greater than (r-|-l)w.,

and there will generally be

(rp.L.r\\ •

1

/ ‘

—

(r+ 1)n independent results.

Cor. If there be three variables x, y ,
and z, we have p = 2,

and then (r+w >n{r+1)>

and therefore r+ 2 > 2n,

and r > 2n — 2,

HenctfSn general it is necessary to proceed to differentiations

of the (271—1)^ order at least, ?«id there will in general be

n independent results.

51 4. The case however in which the n arbitrary functions

•••> <pn(u) to be eliminated are all functions of the

known function of x
, y, 0 is exceptional.* We now have

/{«, y, *, &(«-)» ^2^). — » 0n(U)} = 0*

* See Todhunter’s Cafe., Arte. 251-254.
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Proceeding as in Art. 511, equations (2) and (3) are still true,

i . df . df du
,
du

and we obtain .£+p£ = 0,

3£+(7
3/

dy+qdz dy +qdz

an equation containing

y , 5:, p , q, <fh(u)f ..., 0n(%),
for 0/(u), (p2

'(u), all disappear as before, on the elimination

df *

of Treating this equation in like manner, we obtain a

third equation, containing «

y, z>P> q> t, ^(u), 0n(u).

And the process may be repeated until we have in all n+1
equations from which the n arbitrary functions may be in-

volved, leaving as result a partial differential equation of

the nth order.

EXAMPLES.

1. Eliminate a and b from the equation

y = a sin nx + b cos nx.

2. Eliminate a and 6 from the equation

;// = (a + bar)e"*.

3. Eliminate a and b from the equation

xy - ae* + be~*.

4. Eliminate the circular and exponential functions from the

equation y — e*eos x.

5. ‘Eliminate the circular and exponential functions from the

equation y — ae2*
cos 3x + be2*

sin 3x.

6. Eliminate the circular and exponential functions from the

equation y = ae™*mi nx + be™*cos nx.

7. Eliminate the hyperbolic functions from the equation

a cosh x + b sinh x= c cosh y + d sinh y.

8. Eliminate the constants from the equation

cmc2 + 2hocy + by2 = c.

9. Eliminate the circular and logarithmic functions from the

equation y = sin log x.
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10. Eliminate the circular and logarithmic functions from the

equation y = log sin x.

11. Eliminate a and b from the equation

, • cos mx
y = a cos nx + b sm nx + —

•

n1 - mA

12. Eliminate a and b from the equation

y = a cos nx -f b sin nx + x sin nx.

13. Eliminate a, b, and c from the equation

• y = ae
n>* + be” + ee"8*,

nv n
2,

n.
d
being the roots of the cubic

• a3 +/JS3 + qz+ r =*0.

14. If y^Ae** satisfies the linear differential equation

d"y + „ + v
rf
“~2

?/ + + v _ o^‘ +7>W-I+745af-*
+ - +P*~ 0’

prove that a is one of the roots of the equation.

z" + p^”' 1 +iV”
-2 + • • • +Pn = 0.

15. Show that for a given primitive equation involving a:, y> and n

* \

n
*

arbitrary constants, there are
,

- - differential equations of the rth

order (r<n), each involving n - r arbitrary constants, but that only

r + 1 of these equations will be independent. [Boole.]

16. Eliminate a, b
,
and c from the equation

y = (a + bx)e* + ce~
x
.

17. Eliminate a, b
}

c, and d from the equation

y = (a + foc)cos nx + (c + <ftc)sin nx.

18. Eliminate the circular and logarithmic functions from the
t

equation y =A cos|™log(a + for;)

j
+ B sin^~log(a + for)

J-

19. Ifclimiiiate the function from the equation

z = y sin” 1^ + </>(i/).

y

20. If « = -+ <£(a2/-for),
a

prove ap + bq- 1.

21. If z=d>{x + f(y)},

prove ps-qr= 0.
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22. If

prove

23. If

prove

24. If

prove

25. If

show that

26. Given

prove

27. Given

prove
i

28. Given

show that

lx + my + nz = F(x2 + y
2 + s2),

(mz - ny)p + (war - lz)q = ly - mar.

y-A = F(x
~ a\

z-c \z~cj

(a - a:)p + (b-y)q = c-z.
y

z = e:‘4>{x - y),

y' + 7 = f-

arV + 2,r;ys + y
2
£ = 0.

* = wia:) +/(y - nx),

r -f (m -h n)s 4- rant — 0.

~ ~ xF(ax + by + cz) + yf(ax + by + cz), .

(

b

+ cqfr - 2(b + cq)(a + cp)s + (a + cp)‘2t ~ 0.

1 1 ,/l 1\

z x \y xj

ods . oOto
+ yV = *"•

da d//

29. and F are functions of a; and ?/• Show that the result of

eliminating t between the equations

d2x _ y d2
y _ y

dt~
“ "

’ dt2
~

30. If

y _ xdy

0

v

</ c/a;

dx dry

{ dx2

n -= xyzF(.v2 + y
2 + z2

),

show that (y - z)
du

+ (z- x)l
u
+ (» - y) „ 0.

da; d*/ ds ays

31. “If n = /’(sc2 + y
2 + z2

prove that

32. If

show that t

od2^' o d2s
.

ad3* / i\/ d« ds\
+ 2ay

-d^ +

y

V " (m+n "
^(“a

+%) + mw« = 0.
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33. Show that the result of eliminating the n arbitrary functions

from the equation

a-«v,(|)+«v!
(£))

+-+*v.(£

may be written
|

z, 1 , 1
, .... 1 ;-0,

As, Pv Pv •••. P«
]

A2
«, px\ p.~, j>* :

*k8
~

8
<f< ?)

n
1

* * * » 7

where A represents the operative symbol x
^

•

34. If

show that

</»(«*- - x2
,
u1 - y

2
,
u2 - z2 )

— 0,

1 du 1 du • 1 du 1

x dx y dy
+
z c)z u

35. If

where

show that

<f>{S*(u— x ), S*(u - y),
— z

) }
— 0

S=x + y + z + u,

(s - + (.9 - ?/)?“ + (8 - s$" = 8 - n.
dx Oy o** [Lagrange.]

* 36. Jf

show that
x du y du
a dx

+
b dy

+
z du

C dz

u

d

37 Eliminate the arbitrary functions from the equation*



CHAPTER XVIII.
4

EXPANSIONS.

(Continued from Chapter V.)

Theorems of Arbogast, Lagrange, Lapi.ace and

Burmann.

515. krbogast’s Rule.

Arbogast has given in his Galcul des Derivations (Stras-

burg, 1800) a useful method for the expansion of

<p(a0+a1
x+a.

2
x2 +...)

in a series of ascending powers of x, <j> being any arbitrary

function.
*

Taylor’s theorem at once gives

<j>(a0+

a

x
x+a2x

l+

a

3a;
3+ . .

.

)

= <£(«o)+ ^ (ai*+ + “s*
3+<V4+ • • •

)

4- (a
x
x+

«

2£s
2+ a

z
x3+ ...)*

r-

+ +V2+ + ••)*

+ + • • )
4

or, expanding the several powers of this polynomial increment

which occur, and arranging in powers of x, we have
448
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<f>(a0+<hx+<*’!?*+••)

=<f,(a0)+x[<f>'(a0)

.

aj

+^'K) • a2+ <P"(ao) • *2

+<*>[>(«.) «3+0"(«o) -«i •

+ a:
4^'(ao) • °4+ <t>"(

ao) • a
i

• as+ 4>" (ao) 2

+fw*+fW25i]
+.

Upon examination, it will appear that each of these co-

efficients may be formed from the preceding one by differ-

entiating each term with regard to the last letter contained

and integrating with regard to the next letter, and then

differentiating with regard to the letter next before the last

and integrating with regard to the last.

Professor Cayley (Messenger of Math., vol. V.) *calls this

the “ rule of the last and the last but one.” Arbogast estab-*

lisho.' it generally, but the proof is too complicated to find

place here.

516. Maclaurin’s theorem gives a method of expanding z in

powers of x whenever the limiting values of z,

where, x= 0, can be found. It is therefore specially adapted

for the case in which z is exprers* a explicitly in terms of

x . But in the case of the fundamental relation between

z and x being implicit, the evaluation of high differential

coefficients is often tedious and difficult, and it is therefore

advantageous to make use of theorems specially constructed

to meet the requirements of this case. We therefore

proceed to the investigation of Lagrange’s and ^Laplace’s

Theorems.

E.D.C. 2f
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517. Lagrange’s Theorem.

Suppose z to be a function of x and y defined by the

equation z= y+x<f>(z) (1)

and let u be any function of zs say f(z) ;
it is required to

expand u in a series of powers of x.

Maclaurin’s theorem gives

,

/3u\ x2/d2u\ xB/d3u\

where
dm).-

/3%\
indicate that x is to be made zero

\dx2/o

after the differentiations indicated are completed! The values

of these expressions may all be calculated by successive

differentiation, but the process may be much simplified, as we
now proceed to show.

It will be clear that

'dy[><"] ii>>|] <2>

where u is any function of x and y ;
for each side is equal to

F(
-
U^^'dy+F{UW

Differentiating equation (1) with regard to x and yy
we

obtain

and |=

Giving |=^)/{l -x<p'(z)} (3)

g= 1/{1-X<p\z)} 4)

whence
'dz , /dz

Zx ^ ^Zy
(5)

If now u be any function of z
f
we have

Zu du dz
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whence equation (5) becomes

'W

We shall' in a similar manner change the independent vari-

able from x to y for each of the remaining expressions •

3a:2 ' 3a:
3 ’

""

Thus wp hare =-|[W>a}
remembering that w is a function -of z

, and therefore, con-

versely, 0 a function of u, and applying equation (2). Hence,

substituting the value of^ from* equation (6),

SHI>»f] <7>

Differentiating again, *

S-sUXl
-Ijil«*»

!

|]

-k

=$ [«'<“] «*

The general law indicated by equations (6), (7), (8), viz..

dnu 3n_l r. . .. 3in /m
dxn dyn-i[{^)} dy\ )

may easily be proved by induction. For differentiating equa-

tion (9) with respect to x,

3"+% 3 3"- 1 r . ,, Un3»1
3b»+1 ~dx dy”' 1[}^z>‘ 3yJ
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whence % follows the same law of formation as : but
?5xn+l dxn

equations (6), (7), (8) established the form for the special cases

n=l, n= 2, 7i=3, and hence the form holds universally.

In finding
> •••» # is to be put =0 after the

differentiations are performed, but as all these differential

coefficients are transformed into differentiations taken with

regard to y,
which is independent of x, it is permissible to

make x==0 before effecting the differentiation with regard

to y,
and we shall therefore be able to write z= y and

'du 1

=f\y) ;
and then equation (9) gives

and the development of u or f(z) by Maclaurin’s theorem, viz.,

,, , ,

/du\ x2/d2u\
f(z)=u0+x{^)

0
+

2l(ap/+-»
becomes *

M=f(y)+x<P(y)f'(y)+%c$y[{*(y)my)]+---

+fr^My)}nm]+-

Ex. Given

to expand z in powers of x.

Here /(s)=2 and 1),

and therefore

,.(1 )

gm/rrii-^-gtr-vr.

and Lagrange’s theorem gives

From this result we may deduce an important expansion, viz., that 'of

(1 - 2?/.27 +.r2)'^.
i

From Eqvation (1) ^
n/1 — 2oy + 3T2, '•••(3)

the negative sign being adopted, since when #=0 we are to have tz—y.
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Differentiating the right-hand sides of (2) and (3) with regard to y, we
have

The coefficients PQy Plt
P2i ... of the several powers of x in this expansion

are called Laplace’s Coefficients. We thus have established
*

p =J_ rf"(y2 - l)
w

2nn\ dyn

518. Laplace’s Generalization of Lagrange’s Theorem.

The result of the preceding article is due to Lagrange.*

The proof is however due to Laplace, who has thrown the same

theorem into a more general form, which is easily deducible

from the foregoing.

Suppose that instead of equation (1) of the preceding article

we had z=zF{y+ x<j>(z)} t (1)

and that it is required to expand any function of z
t
say f(z), in

ascending powers of x.

If we write y+ x<j>{z) = t,

we have z=F(t),

and therefore t= y + x<f>[F(t)] (2)

Hence we have to develope f(z) or /[J^V] in powers of x from

equation (2), which is therefore an obvious case of Lagrange’s

theorem, the complex functions f{F(t)} and 0{jF(£)} taking

the place of the simple functions f(z) and <f>(z) in the above

result. We therefore obtain

m-my))+*+m +fi
•

+...+ +....

519. Burmann’s Theorem.

Burmann has given a series of very general form for expand-

ing any function of z, say f(z), in powers of any other function *

of z,
F(z). This like Laplace’s result includes Lagrange’s

series as a particular case, and admits of easy deduction from

the original series.
*

Mimoires de Berlin, 1768.
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Lagrange’s series may be written

/(*>=/(«)+

where e=a+x<j>(z), (2)

“d -4--Q (3>

Pnt "{-«$-*•>
It is clear then that z—a is a solution of the equation

F(z) =! 0 ;
also the form of <f>(z) is

«

Thus equation (1) becomes .

f(z)=A«)+'S—p
r

where

This is Burmann’s result.

Ex. To expand e
z in powers of

[Coll.c Exam., 1879.j

Here F{z)= z
. and a= 0.

•

Hence tfa)—e
e
.

Hence Burmaim’s theorem gives

• r-i r!

or c*= 1 + («e“s
) + 1|

(ze
~ 8

)
2

+ |-j
(«“*)3+^(^_t)

4 +....

520. We have not attempted to give any test for the con-

vergency of the series of the present chapter, and the in-

vestigation for the form of the remainder after n terms,

corresponding to Arts. 130 to 136, has been omitted as beyond

the scope of the present work. For further information the

student is referred to Legons de Calcul Difftfrentiel, par. M.

l’Abbd Molgno (18mo Le<jon); Liouville’s Journal, vol. XL;
Bertrand, Calcul Diffdrentiel, livre Second, chapitre III.
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EXAMPLES.

s3 -a&+& = 0

b 1 3z = - + -za
,

a a
prove that one of the roots is

,=v1 +^: + i2
6
:
+< + -)•

* a\ a3 a6 a9 a12 )

2= a + fo*

[Peacock.]

(

A2 3n-*^3
'l

1 + an-1& + 2wa2n“5~ + 3n(3w*-l)a + ...j.

2 = 1+ ca*,

[Gregory.]

2= 1 + a .
* + 2 log a°® + 32(log af

a-l. + ...
1 ° 2!

x & '
3! [Gregory.]

z = a + x log z,

then ^ a + loS a.x +
21^f +^{

2-loSa€° a 2! a2 ' ° 3!

4 lo£ tt//» r> i— Ho . n i

+ --— (6 - 9 logo
]

2 + 2 log a|
3
)^ + ... •

+l

[Gregory.]
z = a + 6

(
2” + C2

r
),

2 a + (aw+ ca
r
)^ + {2na2n “ 1 + 2c(ra+r)a"+r

“ 1 + c22m2r“1

}
~ + .

1 1.2
[Gregory.]

u — a + e sm u
,

g2 ^ es d2

prove w = a + esina + ^1 ,
(sin2a) + . -,(sinsa) + ....

*

1
2! aa 3! aa2 [Laplace.]

prove *-»= a"*- xfer*-* + ^k(k + 3)a
-*-4 - ~k(k + 4)(k + 0)a“*-* + ...

.

By .putting a = 2, deduce

( 2 \*_ 1
kx Mk + 3)/x\ 2_

• toJ 1 4
+

1-3 W •"
[Bertrand.]

cx2 - 6x + a= 0 or x^*?-!-?.*2.8. If
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x a a2c 4a3c2 5 . 6 aW
(!) *,

?
+ __ +^5r+_5

. 7r+ ...

/o\ x2 _ ®2 a3<J 5 7 .

6

a^c8

J~W +
&r

+
2

’ 6«' +0 * T*"

[Peacock.]

* /9 v , T
a ac 3 a2c2 5 . 4 a8c8

,

(3) log«-log ?+sr + 5
• -gr+273 '~W

+

9. If 1 - x+ ax = 0,

prove by Lagrange’s theorem

xn = 1 + na + la2 + ...

,

[Bertrand.]

e
1-*=

1 + a+i^ + TT
«3

;-3
+ ..

. /-. 1\ a3 a6

“K J "“'3
i

+
»r --

10. If 1 — a:+ e* = 0,

rove ' ar- 1 +ne +
n^+% +'**+

*'+ *)*+..
1.2 3!

[Peacock.]

11. Given

fi ,
2e 32c2 43c3 54e4

!

1 +
2!
+ir+ '4!

+_
5i

xm+l + ax— b = 0
9

r-i [Peacock. ]

b bm+l 2m+2 i2m+1 (3w + 2)(3to+ 3) 63m+1
prove *= ri

-
• a2m+3

- i $ + - •

Apply this to show that one of the roots of

as
5 + 4a; + 2 = 0 is x = - *4928 ...

correct to four places of decimals. [Bertrand.]

1 2. If y = log(s + x sin y),

prove

«

„ ,
. /i kX sin log z2 x2*- *+ sm(log *)j-

+ JS—
g j

r

+
3i!“(Jog*){8 - 9ein(log») - 2sin(log*2

) + 3sin(log*8)}§?+ ....
*kZ

£ o!

[Gregory.]

13. If ^ x=e*+aft!08 *'

prove y= e* + tf*cos + e*cos e‘(cos e* — 2 sin e*. e*)^- + ....

1 21

14?. Having gjiven that u is a function of x such that

*
,

, du h2
A
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prove that h = vu 4- (v^-\v •^r + (Vy-) + ...

,

\ dxj 2! \ dxj 3!

where
du [Paoli, Elementi d’Algebra.]

15. Apply Burmann’s theorem to develope x in powers of m
2x

1 +x2

16. Expand e
M
in powers of zd* by Burmann’s theorem. [Bertrand.]

17. If <f>(x) be any function of x which can be expanded in powers
of e*, prove (by aid of Ex. 16)

4>(x+ a)
§

= + a<f>'(x + b) +
a(“~ 2

-V'(*+ 26) + + 36) + . . .

.

1 , Z o!

For example,

(x+a)m=x"+ ma(x + 6)*- 1 +
rH^Z^}a(a- 26)(«+ 26)">-s+ . . .

.

• [Abel.]

18. If be the inverse function of </>(#), and <j>(x) vanish with

x, prove

* 1(*)=a:
[^(J0

+
2! [<fe T#^)pl

+
3i [da? {W’l+ -



CHAPTER XIX.

CHANGE OF THE’ INDEPENDENT VARIABLE.
t

521. If there be an expression involving two variables x

and y and containing the differential coefficients ~~

it is sometimes desirable to change the independent variable

from x *to some third variable t, of which as is a known
function. This change may be effected as follows :

—

It has been shown in Art. 41 that

dy
dy _ dt\

dx dx
* dt

d
The operation ^ is therefore equivalent to the operation

1 sL
IZx dt

dt

For instance,

f~
dy~\ <&y dx_d2x dy

<V*y=J_ d dt dt*' dt d#' dt
dx2 dx dt dx

=

(dx^
dt [dtJ Xdt)

Similarly

d?y dx_d2x dy
d3y __ 1 d

!_J
dt2 dt dt2 dt

dx8 dt (dx\*
dt \dt)

458 .
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/d*y dx_d3x dy\(dx\8

\dt? dt dP dt)\dt)

dx_ dPx

\dt2 dt dt2 dt
0/ctr\

2
({
2x

S\W W2

dx_dPx dy\dx
Kdi3 dt dt* dtJ di

1

m
d2
y dx_d2x dy\d2x

dt!2 dt dt2 dt)dt2

(dx\ b

\dt)

and similarly for differential coefBcients of a higher order.

Also, x being a known function of t, all the expressions

t
dx d?x d3x

dt W di*

are known functions of t, and therefore the desired transforma-

tion can be performed.

522. If we wish to make y the independent variable instead

of x
,
we have at once, by putting t= y , #

dy_,
dt' ’

d%y= o
dt2 ’

d3y_
dt3

= 0, etc.,

and therefore
dy=± t

dx dx
dy

d2x

_ W ,

dx2 dx\ 3

dy)(:

d3x
m

dx Jdtx'f
du3 dy

9

\dv2)d3
y___ dy3 dy " \dy2

dx3 (dx\ 6

\dy)

formulae which may of course also L obtained directly.

523. Differential equations may often be simplified by such

substitutions, as in the following examples :

—

(l)b Change the independent variable from x to 0 in the equation

(i'^)§_*£+3'=0’

having given =cos 6.

dx
d$
= - sin 6,Here
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and therefore
dx sin $ dO

_ 1 d( 1 dtf\

dx2 sin 0 d0\ sin & dOJ

Hence the given equation becomes

sinflg-cos^ ,

(1 - C08^ he
' +cos 9

izre l+y=0>

and reduces to &+'-a

(2) Change the equation g- (g)
2

_ y(g)
3
=0

so that y may be considered the independent variable instead of x.

Here we have
/dx\6 (dx V* /r&r\ 3 ^

'dy/ Wy/

Examplks.

1. Show that the equation

(1 +cw2)g+ctr^±9’3y=0

may be reduced to the form ± q-y=

0

S=^
d2#

by putting
*

•

2. Show that the equation

may be written in the form~ + a
{^^j

=0.

524. The Operator x

A transformation which renders peculiar service in reducing

a certain class of linear differential equations to a form in

which all the coefficients are constants, arises from putting



In this case

and therefore

CHANGE OF THE INDEPENDENT VARIABLE.

•dx

dt
'

„dy=dy
dx dt

*

j
It is obvious therefore that the operators and

equivalent. Let D stand for Then we have

dx\ dxn-y
x
dx”

+{n 1)x ®r-v

• xn
dny_ (x

d _ n+ 1 )xn-l<l
n-'y

x
dxn \

x
dx

n+lror

which we may write

dxn
~'~ ’

' dxn

Now putting n in succession = 2, 3, 4, .... we have •

a£y=m- l)x^X
dx*

{v l)x
dx

• x3^y-(D-2Wd2yX
dxs

~ {n Z’X dx*

da

?

etc.

Hence, generally, we have

*g.(Z>-*+ 1XD-»+*) (V-l)Dy,

or reversing the order of the operations,

^D(D-l)(D-2) ... K 0~n+l)y.

Ex. The differential equation

reduces at once to

.

a D(D-l)(D-2)y + 2D(D-l)i,+ZDy+4y=0,

or /^-D^+ 3Zty + 4y==0

by putting x—^.
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525. Transformation to Polars, and vice versa.

It often happens that a result in Cartesians is much simpli-

fied on reduction to Polars, or vice versa.

In such cases we have

x= r cos 0,

y= r sin 0.

Suppose 0 to be the independent Polar Variable, then

dy (Dr . ~

dy M
dx dx dr

dd dd
cos 0—

r

sin 0

Similarly,
dhj 1_ d
dx1~ dx d.0

TO

sin 0+rcos 0

dr

dd
cosy—rsm(

which easily simplifies down to

d2r

'd62

^cos 0^— r sin 0^

526. Suppose x and y to be expressed in terms of some third

variable t, then it is easy to show that

dx
,

dy dr
y» L_ /ii 7 — rv\x
dt
+
y,ii-

r
di’-

a)

(2>

(mhsms* «
Equation (1) is at once obvious by differentiating the equation

x2+y2— r2

with regard to t.

To prove (2). Let 0 be the pole of the curve whose equation

is obtained l$y the elimination of t between the expressions for

x and y. • Let P be a point on the curve whose co-ordinates are

(x, y) or (r; 6), Q an adjacent point whose co-ordinates are by
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Taylor’s theorem

X+
7B**

t or in Polars

e+
f,

st
.

The Cartesian and Polar expressions for the area of the

triangle OPQ
,
when St is very small, are equivalent. Hence

ft

which gives in the limit x-]{— = r2-.y
at * at dt

Formula (3) obviously represents the equivalence of the two

(

f]o\ 2

. Arts. 200 and 201.

All these formula may of course be established otherwise.

Ex. Transform to Cartesians the formula

r

This we may write as

dr

dt

VMS’
dx . dy

x . -f V i
dt

J
dt

dyx+
y-dx

527. Two Independent Variables.

We shall now consider the case in which there are, two

•independent variables x and y.

ket , U=f{x>y) V (1)

Suppose x—^iu, v)|

y= 02(u,v)J
' '

be the proposed transformation; then we have

dU dU dx
,
dU cT
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'bJJ dU
These equations may be solved for

,
giving

dU
#
*yJdU

9
dy

dU du dv dv du
dx ~~dx

'

dy_dy
*
dy^

du dv dv du

dU
t

Vx_dU
m
dx

and
3t7_ dv du du dv
dy dx dy dx dy

du dv ~~dv du

If, however, we could solve equations (2) for % and v in terms

of x and y so as to express them thus,

<>
y)J

wc can find and substitute in the formulae
dx dy dx dy

dU_dU
#
du 3l7

#
dv

dx — du dx * dv dx «

dUjdjr
#
du dU

9
dy

dy ~~ du dy dv dy>

528. The differential coefficients on the right-hand sides of

the equations of the preceding article are all partial. For

dx
instance, in finding the value of — from equations (2), v is

treated as a constant, while in finding - from equations (4),

y is
t
treated as a constant. The student should [therefore

guard carefully against any such assumption as that = 1-

For the truth of this equation was proved in Art. 55 on the

assumption of a relation between u and x and no other vari-

able, but this is not the case now considered.

529. The case of transformation from the Cartesian tot the

polar form deserves special notice.

Here x—r cos 0, r= s/xl +y*>

* y =r sin 0

,

#
0=tan -1^,
x
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dx . x— cos 0= ,

or r

* -*«-*.
dr r

dr

dx

dr

-r
. = cos 0,

dx

dd
= — r sin 0= — y,

Now,

du

dd
==rcos v = x,

dV
ss
dV

m

dx dr

dVjdV
9

dy ~~
dr

dVj)V
dr dx

dV^dV
dd dx

_ — ,
^ = sin 0,

s/W*/2

30_ ?/ _ sin0

3.r
_

.c
2+ y'1 v

30_ x _ cos 6

dy~ x?+y*~ r

3r 3F
dx
+
d

6

'

dr dV
dy
+
OQ '

dx dV
dr dy

dx dV
30
+
3y

'

30 ndV sin 0

dx % dr r

30 . .37, cos

0

dy dr r

dV
30’

dV
30’

dy_ x
_
dV y _

dV~
3a? ?• dy’dr

dy dV
,
dV= ~V-a- + x ^.‘

30 17 dx ' " dy

Hence we have the following equivalence of [Polar and
( 'artesian operations :— *

while

3 n d sin Q d \

r - 1*
3 . .3 cos 0 3
aj'

s"’ (,

a,'
+

, zer)

and either of these operators may be obtained from the other

by changing 0 into ^— 0.
Jt

Also
3 3,3'

T~ = X '
„+ 2/gy>

.and

dr

d

dx

d

d0
X
'dy ^dxJ

= cos20,

o30. Jt will be noticed here that

dr
m
dx

dx

dr

•

dd

d6
F.D.C.

dr

|^= sin20,
dr

dQ

dx'

W
dy'
*2o

= sin20,

= cos20,



466 CHAPTER XIX.

thus bearing out the observations of Art. 528 that such pro-

ducts are not of the kind contemplated in Art. 55, and whose

values are unity.

32V d*V
4^1. To transform ^ and ^ to Polar Co-ordinates.

nr . d*V /3\V / n d sin <9 3 \ 2

We h,ve
ao -fe) r-(“8SS-— aj)

v

fl3f adV sin 6 3VI sin 0 3 T 31= cos 0—- COS Q'— ~J cos 0—
3rL 3r r • 30 J r 30L 3r

3f .3F sin 0 3 V"1 sin 0 3 I"

= cos 0—- cos Q'— ~J
3rL 3r r • 30 J r 30L

s„3
2F a sin 0 cos 0 327

,

sin20 3*F
r=C0SW

3^ r 3r30
+

r2 302

„3P sin 0 3K~|

r 3(9 J

sin20 3F 2sin0cos0 3F+
~~r 3r

+
r2 30’

. ,

' 3»F /3\* /. J ,CO3 0 3\2„
And

<y - (a»)
r“ (

s,n eSr+ r ze)
v

• a 3 r • adF
i

cos ® .
cos 0 b r . ~aF cos 0 ain

" e
a-L

sm 6
Zr
+

, 38J+— 3»L“°
6
Zr J

2sin0cos0 32F
,
cos20 32F“ sin

r 302

• cos20 3F 2sin0cos0 3F
r 3r r2 30

’

532. Transformation of y2F
By addition we have

c*F 1 dV m
3®2 + 3y2 “ 3r2 +r dr

+
r2 302

’

It is easy to deduce from this result the corresponding trans-

formation of the expression

+7-*? ?r *r
V V ~dxi+ dyl + 3z2

to polar coordinates, the operator y2 standing for

‘ ^ ^ ^
3a5

2^"3y2 "^3s2
’
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The transformation formulae are now

x=r sin 6 cos fa

y=r sin 0 sin ^
2= rcos0

Let rsin0= u,

then x = u cos fa

y= wsin </>,

and by the preceding article

d2V 1 dV 1 3*F
:

du2+udw +u2
dfa

2
'

d2V OTr d2V .
d2V. ldV . 1 d2V

&y.&v_
dx2 dy2 ~

^ ^
'da2 dz2 +udu~^u2

dfa
2

'Adding^ >

The quantities u, fa z are often termed Cylindric Co-ordinates.

Again by the preceding article, since

z= r cos 0, •

n= r sin 6
}

d2V. d2V d2 V. 1 dV, 1 d2V
3u2 + dz1

137 1 __=

3r2
+
r dr

+
'r
2 dd2

’

and

Hence

wherefore

d

V

. /fiV cos 6 dV-- =sm 0 --Hdu dr r d6

1 dV_
u du

~
1 9F cot 6dV
v dr r2 dd

9

(Art. 530.)

d2V2 9F 1 d2V cotO dV
V dr2 + r dr

+
r2 dd2 + r2 30

+
r2sin20 302

‘

These transformations derive their interest from the, fre-

quency with which the equation y2F=0 occurs in various

problems in the higher branches of physics. (See Art. 189.)
»

533. Orthogonal Transformation of ^2 V.

If wo transform the expression

d*V d2V d^v
* da?

+
d

y

2 + dzi

by changing to any other set of axes Og, Or/, Of mutually at

right<angles, retaining the same origin, it becomes*

32y 32F 32F
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For let the scheme of the orthogonal transformation of

co-ordinates be that shown in the margin.

Then it is shown in books on solid geometry

that

* . l
t
2+Wj2+n 2 —l, etc.,

’
£i
2+/2

2+£
;t
'=l, etc.,

l
l
m

1+ + l3ma = 0, etc.,

l
x
l.,+

m

l
m

i -f 'H
l
7i o = 0, etc.

f V f

M
I

y h Wi2 W*

|

z l3 WS "a

Now

and

And similarly

327
dx2

f l.,y+ l3z,

r)=m,a'+m.,y+m3z,

i= n
t
x+ n

2y+ n
3z,

dV_dVdg 37 373f
da: dx dt] da; dg dx

,37. dV, 37~ l
idg
+m%- +9h df

3 37 ,, 3 ,
3

,

3 \/j dV
,

37
,

37\=
3x 3a-

= (^

+

fl,
i3,+«igf +m% +r

'> 3{),

3-7

3£2 1

drj
1 1

“l
dt?

, 2327 L»3-7
,

23*7
,

_ , 327
=^ +»»i sm +wiW+2mi*to;

Similarly

327
dy2

327
. 3a2

'a#
32 7 327

+2"A^f+2i*m
>afA/

,,3
27+̂ efcc

>

,*a27.= ^3 a/w+etc.
3£2

Whence by addition

327
3a?

327 327 327_ 327 3*7 3*7
2 + 3y2 + 3z2 " 3f2 +V +

3ft

and the form is therefore unaltered by the transformation.

EXAMPLES.

1. Change the independent variable from x to z in the equation

a-*?fy=xdy~,'
'dx* dx

where x= sin z.
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Show that the form of the equation

remains unchanged if we substitute I for x.
z

3.

Show that the equation

4MM- 0

becomes

by substituting e* for x.

4. Transform the equation

sin22«-~^ + sin 4z®. + 4y = 0
dzl dz

by putting tan z = 6*.

5. Transform the equation

(« + 6*)^ + yt(« + te)J + By =f(x)

by putting a 4- bx = er.

0. Transform the equation

(1 +x*)
2̂ + 2x(l + x2)'^+ y = 0

into one in which « is the independent variable, given # = tan t

7.

Transform the Cartesian formula

du
xl~ v

Mi)'
to polars.

8. Transform the polar formula

tan <£ =

to Cartesians.

9. Transform the formula

rcW

Ml
into polar co-ordinates.

10. Given * = a(^ + sin 0),

y«a(l - cos 0),

d?y 1"J** 1
sec4 -*

<&2 2

469

prove
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11.

Transform to the new variables u and v, taking u as inde-
dx2

pendent variable, given y— uv,

12.

If V be a function of r alone, where

r2 = a:
2 + y2

,

[Oxford, 1888.]

show that
1 dv

dx2 + by1 dr2
+
r dr

13. If V be a function of r alone, where

r2=x2 + y
2 + z2

i
'

show that i*:
3** + fy

2 + 3a2 dr2 r dr

14. Generally, if V be a function of r alone, where

r2 = a?
2 + x% -4* ... + a:n

2
,

, WV d2V d2V d2 V d2 V n-ldV
showthat ^+~-+-

d
—+ ...+„ a=_ +_-

15. If x = e*sec w, y = e*tan w,

and is a function of x and y9
show that

[Oxford, 1889.]

16. In transforming any function u of x, y9
z from Cartesians to

polars by the formulae x = r sin 0 cos <£,

y = r sin 0 sin <£,

3 — r cos 0,

prove (a)
dx __dr^

c3r
~

drc*

V7;
3</> 3* 3<£3y

’

« ®’+
(g)

,+(£H£K
17. If K be a function of two independent variables a; and y which

are connected with two other variables r and 0 by the equations*

Fifa y> r>
O) =

* ,
F2(x> y> r,0) = O,

show how to express and ^ in terms of — and
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18. If in the differential equation

x
*a&

+A^~ 1

£f-i+ - +

the independent variable be changed to 0, where x~e$
, show that all

the coefficients in the transformed equation are constants. ^
19. Show that by putting x2 = s and y

2 -t the equation *

Axy
^£)

+ (** ~ Ayl - B^~ xy=i

0

is reduced to

BdJ-
da%

, da A dt+X
da

4 dt
t — 8 - —

20. Transform the equation

by putting x = cos 0.

21. If x* + z* = 1,

show that the equation ^|(1 - + n(
n +

0

becomes z(z2 - 1 )^\ ^ + (

2

z2 - 1 )^- - n(n +l)zlJ =*0.

i

22. If +

show that the equation j(l - aj2)^~} + n(™ + 1)^= 0

becomes

23. if as = r cos 01

» y = r sin 0J

(,32w 0 3
‘
2m

,

«32m
prove a;

3^
+ 2xy

?>xdy
V
Vy*

1

and as&±-Zxu +y2— = :

3y2 ^dx'dy
y

'dx2 <

24.
>

if a; + y = 2e cos <£, and

3/0

show that
02T 32 F . 32 F
303

+
3^3

" 4*y
3a

:V [Oxford.]
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25.

Prove that, if

transforms into

0

x = r sin 6 cos </>,

y = r sin 6 sin </>,

z = r cos

027 WV 02

7

3k»
+
3y*

+
3i2

ndV\3/.,. adV\ 3/ • „3K\ 3 / 1 3F\ n

3>-V
8115

^3r )
+

3fl( ^30 )
+
3^(sin 6> 3^.)

’

,1 • *.
3'-( Vr) 3 rn ,,3F) 1 32F '

and also into r
+ ^{<1 -^ } +

, . ^^ = °-

where /i = cos 6?.

26. Transform T3

^-^ + <9^, where P and Q are functions of x only
ax2 ax

so that t may be the independent variable, where ^ = JP.

27. Transform the equation
t

ry1 — 2sxy + tx2 =px + qy - z

by putting x= u cos v}

y — u sin vj

28. If z be a function of x and yy
and Z be written fotpx + qy - z

}

prove that if p and q be taken as independent variables,

0£ d2Z_ t &Z a 02Z r_
c)p

1

dq dp2 rt - s'
2* dpdq rt - s2

' dq2 rt - s-

29. Show that

where A represents the operative symbol x^ + y--^ or in polars.

30.

Prove generally that if x - e
d and y =

“!
'Sf

+’^"S<J^,+ - +^“-^4- !K4- 2)...(4-«+ !)>.,

where is2 +
9

.m d<j>

x ~ tP, v = iP,

31.

If

transform the expression

‘ ,^V. _*dV. ,*3F
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If u + iv =f{x + iy),

where * and y are independent and u, v, x, y are all real, prove that

ae2 "d’f
yU '

Hence establish that if x= r cos 0, y = r sin 0
,

then
d2v d2V_d2 V IdV 1 d2 V
da?

+
dtf

~ d?
+
r dr

+
t

?

302
'

[Oxford, 1888.

33.

Transform the equation

to polar co-ordinates.

34. Show by a change of rectangular axes that

VV . 32 V^7?7 9 , VV.-W 0/ 3* V
a
a?

+

6

y + * a?
+^ +

+

W
may be transformed to A ^ ,.+//_ -- + 0J dxl d

y

2
<3s-

35. Under what condition can

dV^.dV
a
*dx

+b
*ty

dV *dV
by a rectangular transformation be reduced to the forms A

respectively?

36.

If «=/(*, y), and y
2= |,

change the independent vari-

ables to £, r; in the equation

x2
,d

2u
2xu~~ +viC

f 2j/?^ = 0.

Sx2 'dxSy 'ey- dy

37. If a, y be the rectangular, r, 6 the polar co-ordinates of the

same point, prove

dhi Wu ( 9%\
2 _ 1 0% 32u 1 du &u_ 1/9|m _ 1 3»\*

Sail
' By2 ~ \dx5y)

~7i d?‘ 302 r dr dr11 r\drW r dd)
'

•

38. The position of a point in a plane is defined by the length r

of the tangent from it to a fixed circle of radius a and the inclination
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c

0 of the tangent to a fixed line. Show that the continuity equation

transforms into

d2
4> 1 00 l 30\ «/

2
320 1 00\ 0

•dr2 r dr r- 002
?f\ dr- r 0r/ r2 \ 0r00 r 00/

39. ^rove that

vr&r&v &V
dx? dx% dx£ ’

’

* da;

2

^lfd/^rx d /wdF\ d /WdF\ d /w dr \)
W\dr\ 0rV 30,U, 00ir 90,

W

2¥ M^»Wi3W J

where = r sin 0
x
sin 0

2 . . . sin 0W_ 1 ,
u

1
= r2

,

4

a?2 = r sin ^sin 0
2 . . . cos 0n_ls w

2= r2sin20
1 ,

£c
3 = r sin 0

x
sin 0

2 . . . cos 0n_2 ,
w
3 = r^in^sin202 ,

xn_j = r sin 0
T
cos 0

2 ,

x *— r cos 6V un_x = r2sin20
1
sin20

2 . . . sin20n_ 2,

and W= r"- 1sin
w-20

1
sin'

, - 30
2 ... sin 0n_2 . [Math. Tripos, 1889.

]

40. If Pl =fx
(x, y,

z),

p2=f2(x> y> z)>

Pn i(
x

t Vi z
)>

show how t$> change the independent variables from x, y, z to pv p2,

P3 in any partial differentials.

If pv p2 , p3 be a system of orthogonal surfaces show that the expres-

sion

transforms into

02f 02r 02r
dx- dy2 dz2

>Y

etc. [Math. Tripos, 1875.]



CHAPTER XX.

MISCELLANEOUS THEOREMS.
»

» Jacobians.

534. Definition. Notation.

If uv u2,... t un ben functions of the n variables xv x2% xv .-.,xnh

the determinant

du
i

3?/.,

3V 0x2

’ W -
dxn

du2 du2

dx/ 0*^2 dx„

3u„ dun dvn

a*/ dx2

has been called by Dr. Salmon the Jacobian of u*f u2, ..., un

with regard to xv x
2, ... , xn

*

This determinant is often denoted by

0(^11 ^2 »

X2 ,

Un)

xny
V'2» ••• t Un) t

or shortly J, when there can be no doubt as to the variables

referred to.

535^ The Jacobian of Three Cur »*.

If u= 0, v— 0, w— Q be the equations of three curves in any

homogeneous co-ordinates, it has been shown that the polar

lines of x
, y, z with regard to these curves are respectively

Xux + Yuy +Zuz = 0,

Xvx + Yvy +Zvz =0,

Xwx+ Ywy+Zwg=0.

* Salmon, Higher Algebra, p. 78 and p. 392.

475
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*

These three lines are concurrent if

uXi ^ = 6.

m* wy ,
wz |

Tk*\s the vanishing of the Jacobian of three curves indicates

the locifes of a point whose three 'polar lines are concurrent

Ex. Show that the Jacobian of three circles gives their orthotomic circle.

536. Prop. If any set of homogeneous equations be satisfied

by a common system of variables
,
the equation J—0 is also

satisfied, by the same system
,
and if the degrees are the same,

the equations

system.

For if u= 0, ?;= (), ^<;= 0, ... be the equations, of degrees

py q, Vy ... respectively, and x
y y, z

t ... the variables, Euler’s

theorem on homogeneous functions gives

x ux + yuv + zuz+ . . . = pa,

M'x + =qvy
xv'x+ywv+ . . . = rWy

etc., *

and solving for x we obtain

c
xJ=puU+qvV+rwW+ ... y (1)

where U
t
V, W, ... are the co-factors of J corresponding to

uXy vXi wXf Hence if any system of variables can be found

to make a= t>=w= ... = 0 simultaneously, that system will

also make J=0.
Again, differentiating equation (1) of the last article we have

vfr+J=p(uxU+ vP^j+ ... —pux ll+qvxV+ ...

,

when u= v=. .. = (). «

Hence if the expressions u , vf
... were all of the same degree,

we should have p= q= ... = n say, and

3/, r rx
dx
+J=nJ>

and therefore for such a set of variables as simultaneously

satisfy the .equations u= 0, v=0, w=0, ... we have !^=0.*

* The method of proof adopted is given by Dr. Salmon, Hif/her Alf/efyra, p. 78.

0, 0, . . . will also be satisfied by the same .



MISCELLANEOUS THEOREMS 477

Similarly, ^=0, ^ = 0, etc.

537. If then the curves u= 0, u= 0, w=0 have a common
point, the curve J= 0 will go through that point, and further, if

the curves be of like degree, we shall have

dJ=dJ=dJ=0
dx dy dz 9

so that J= 0 will have a double point there .

538., S\nce the equation

!
= 0Ux, Uy, u

$ !

Vx, V2

Wx, wz

II
N£ 0, it goes

points on the curve u= 0. Similarly, it passes through all the

multiple points on any of the curves of the families u= a, v= b>

w= c for any values of a}
b> c.

539. The Hessian.

The Jacobian of the first differential coefficients ux,
vy ,

u z of

any function u is

• uxz ,
v.xyj u,xz

vxy> vyy> »

UXZi Ufiz,
n zz «

and has been called the Hessian (Art. 3 LI).

540. Prop. If J be the Jacobian of the system u, v with

regard to x
y y and J' the Jacobian of x, y with regard, to ut v,

then will JJf =1.

Let u=f(xy y) and v= F(x, y),

and suppose these solved for x and //,
giving

x= <j>(u,v) and y= y/s(u,v),

1
_du dx.du dif

'dx 'da dy du

dx du dy

dx dv dy dr,

0
_dy dx.dv dy]

?jx du"dy du\

1
_dv dx dv dy

j

"dx dv^dy dv)

we th'en have
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Also JJ'= du
>

du
X
dx

»
dy

dx dy du du
dv dv dx dy
dx dy dv dv

du dx du dy
dx du dy du
dv dx dv dy
dx du dy du

du dx du dy

dx dv dy dv

dv dx dv dy
dx dv dy dv

1
, 0

0
,

1

= 1 .

In the same way the theorem admits of proof if £here be more

functions and more variables than two.

This theorem may be written

d(w, v, ...) Mx, y, ...)_
j

d{x,y,... } ...)

541. Prop. If U,V are functions ofu and v, where u and v

are themselvesfunctions of x and y, we shall have

For let

Now

djU, V) JdjU, V) %u,_v\
d(x, y) d(u, v) d{x, y)

U=f(u, v), V=F(u, v),

u=<j>(x, y), v=\h(x,y).

dU_dU du dU dv
dx du dx' dv dx

dJJ_dU du dU dv
dy ~ du djj dv dy

dV_dV du dV dv

dx ~~ du dx dv dx

dV^dV du dV dv
f

dy 'du dy dv dy

. dtu.v)
x

'o(x, y)

dU dU V du dv
tdu dv

X
dx' dx

dV
t

dv du dv

du dv dy dy



MISCELLANEOUS THEOREMS. 479

ZU ZuZU Zv ZU Zu ZU Zv
Zu Zx Zv Zx Zu Zy Zv Zy
ZV Zu.ZV Zv

f

ZV Zu ZV Zv
Zu Zx Zv Zx Zu Zy"^ Zv Zy

ZU
}

ZU _Z(U, V)

Zx' Zy Z(x, yj

'

ZV ZV
Zx’ Zy

and the same method of proof applies if there are several

functions and the same number of variables.

542. The r.bove propositions exhibit the curious analogy

pointed out by Jacobi between these determinants and ordinary

differential coefficients.

543. Pbop. If u, v be connected implicitly with the inde-

pendent variables x, y by the relations

we shall have

For

A(x> y, u, v)= 0,

V, u, v)=0,

Z(A>A)J{A’A) .

Z{x, y) Z(u, v) Z(x, y)

3/x+ ?/t ?w=0
Zx^Zu 'Zx- Zv Zx ’

M ,

3/i . 0/, zv
'dy'Zu Zy Zv Zy

Zf% Zf% Zu. Zf, Zv

dx ' du dx dv dx

dy^du dy dv dy

Hence Mu’ v
\Z(u, v) Z(x, y)

?A Zu Zf
j
Zv

f

du dx^dv dx

du dx^dv dx

du
,

dA dv

Zu Zy~*~Zv Zy

ZA Zv

du dy~*~dv dy

Zfi, JA J>(A> A).

Zx Zy Z(x, y)

zA
, _%

Zx Zy
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544. If there had been three independent relations with six

variables u,v,w
\
x

, y, z

;

it is plain that we should in a similar

manner obtain

^/li/s./s) .
s(u.

v> w)=
|

c)(u, v% w) d(x
, y, z)

\

L2fi. J>h J>f

\

dx dy ds

dx ty 3z

dx dy 3s

i vfiifvfi* A)
v ' d(x, y, 2?)

’

And in general, if there be n independent relations

fl
=

f'2~ » fn — Q
t

involving 2w variables uv w2, ... ,un and x*2, . .
. , x*n,

then we
shall have

Ktv fy •
- • *_/w) _ ^ 3

a(/iP fa* _•••
9 fn) . ^_(^P ^2

/Vt /VI /VI \ ' ' rV /] i /» / /If \ TV/V» /VIX2 , ... , x?M ) 0(^j, ^2 ••• 9 'U'n) *^2»

• Un)
... f

£Tn)

545. Covariant. Definition.

Let / be any quantic from which another function <j> is

derived in any manner, involving the constants and variables

of the first. Let the variables of/ and
<f>

be changed by any

linear transformation, the functions becoming F and 4*. Then

if it be found that the ratio of <i> to 0 is a power of tH
modulus Of the transformation, (p is said to be a covariant of

/! If none of the variables enter into <p> then <p is called an

Invariant.

546. Prop. The Jacobian of a system of functions u, v
f
w

is a covariant of the system.

shown in the margin, so that

x=l
l
x

1
+m

1y1
+n

l
zv

et«\

Then
du __du

J
dll

J
du

• *2+ '

dx, dx
etc.

?>y dz

that
| ?/i

j

Zl

1 X h Hi

,
u k W-.

|

7U

i

i

-'!h 77lS 7i :

Hence the Jacobian of the transformed system is

U
*i
= ^x» 'Myt Uz X ^l>

^
2 » ^8

V*, Vy, Vz mv m2, m3

™xx ,
Wz

x

Wx,
Wy> Wz
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(by the rule of multiplication of determinants)

— JXjUL,

where J is the Jacobian of the original system and y. the

transformation-modulus.

547. Prop. Let uv uv ..., un he a set of function^)f n

independent variables xv x
2, xn . Then if these fimctions

are not each independent, but if some relation exists among
them which is identically satisfied when their values are

substituted, their Jacobian

j^?l(u
l
,u

2,...,'un)

#2> • • * » *®rt)

will vanish identically . Also conversely
, if J is identically

zero
,
some relation must subsist amongst the several functions.

This result has already been established in the case of two

functions of two variables in Art. 510.

Consider the case of three functions uv u2, uz
.
* Let the

relation subsisting among them be

f(uv uv u3)= 0.

Then, for ajl values of the variables,

3/ df du2, df 0U
3 = O

dU} dx
x

c)u
2
'dx

l
***'

3/ ?>f du,
|

df 3us

du^ dXs du2 dx2 du
3

<dx,

_?/ 3/ 9u2 3/ 0t«s= o
oir

i ’afa

't 'v-'
; •*., u-

0^3 0^3

pf 3/ we have
’ 3w

2

> 0W3

c lt
2 __ A

c>xf 0.
*

0^
0l/3

a**’ ar2

0u
2w W

9(^7

u9 u

^2’

s) = 0.

0

548. Conversely, let
djuv u2, u3)

d(xv x2,
x
t)
s 0.

• 2 HK.D.O.
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Between the equations connecting the u’b and the remaining

variables eliminate two of the latter (say and x2), and we
obtain a relation between uv uv ua, xs, say

Ua=F(Uv% xa) (A)

J^\.
d(Uy n2, «g)= a(w

1, u2,
F) g(Up < a:,)

'd(Xy X2t X^j *d(V/y V-
2 , Xy) d(jJCy X2> Xg)

= 1 n n v J**i —j
’ ’ dx

x
’ dx2 dxa

n I o 2«*
’ dx

1
’ dx2 dxa

for in forming the first determinant we are regarding uv u2, x3
as independent variables, and in the second xv x2 ,

x3.

1, 0
,

0 X

0, 1, . 0

dF dF dF
~dui du2

’

dxa

Therefore
^

2

1 ^3) ^ ^(^i> ^2)

0(a?i, aigi ^3) ^3 ^(*i> ^2)

Now the left-hand side by hypothesis vanishes, hence either

or (2) Svau.
c B(^1} #2)

In the first case F is independent of x
3 ,
hence the quantity

x3
has not appeared in equation (A) after the elimination of x1

and x2,
and therefore a relation between uv u

2,
u3 has been

established.

In the second case, viz., = 0,
* ^2)

no differential coefficients with regard to x3 occur, and there-

fore x3 may be regarded as a constant. Hence by Art. 510

there is some relation between ux and uv which may however

involve ^3 asa constant. Let it be

f(uv uv a
3)
= 0.

If #3 be eliminated between this equation and (A), there will

result a relation between uv u2 ,
u3 .

By proceeding in similar manner the proof may be extended

to any number of functions of the same number of variables.

See Forsyth’s Differential Equations, Art 9.
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Some Important Operative Symbols.

549. The Operator &.

It has been shown in Art. 524 that the operator

d
comes by the change in the variable x = eK

operator be denoted by the symbol

The fundamental properties of this symbol are

• *(1) $nxa=anxa,

(2) 0(*)^=0(a)xa,

(3) xn
(^Su=^~m~ 2) - o-n+ 1>>

(4) <p($-)xnu= xn<j>(^+ ri)u.

(1) The first of these is obvious

—

For . $xa=

$2xa=$axa=a2xa,

etc. etc.

§nxa=anxa,

where n is any positive integer.

For negative indices

—

Let %~ 1xa=yi

/jjd

therefore = = & ,J a

so that ^ _V=ra" lxa,

supposing that no constants are added in the inverse operation.
*

* Hence also crw£Ca,

so that the law (1) is true for any integral index.

(2) if <p(z) be any function of z, v liich is capable of expan-

sion in integral powers of z
,
EAnz

n
,
say,

<f>($)x*=2An$na?

= 2Ananxa

= ^>(a)xa.

(3)

* The third law has been established in Art. 624.

(4) To prove the fourth

—

Let g«e‘9
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and let u=F(x)—F(e*)

;

then </>{$)xuu= </>(~^entF(e*),

v
\

Ex. 1. Prove

=ent
<f>

t̂
+ii)F(et

), (Art. 101)

=xn<p(%+n)u.

[Math. Tripos, 1878.]

Let ' (0‘~
r

^)=V^)- .

We tlien have to prove

^*(£)v • *'(£)'•

•

And the left side

- 1). . .($ -m+ 1 ~ 1 ). . .(^ - r+ 1
).v-myfr{x)

= -
1 ). ..(& - ?n+ 1)($ - m)$ -m - 1). ..(& - ro - r+

1

W#)—-dT**
This solution and another of the same result are given in the Solutions

of Senate House Problems and Riders for 1878.

Ex. 2. yrove (.t

and that any number of operators

are convertible with regard to order. [Proc. Lond. Math. Soo., Vol. VIII. J

Ex. 3. Prove (^V+i(^)
M+

V(^)=~-+1<A
an+1

(^)-

[Solutions S. H. Problems, 1878.]
*

550. The Operations E and A.
d

The operator e<£», which when applied to <p(x) changes x to

x+1 (Art 116), is* often denoted by E, so that

Eux=ux+1 .

Let ,
Aux=

u

x+x—ux=Eux-ux= (E— l)ux.

c d «'

Then thb operators E, A, e<& are connected thus

—

E=* l+A=eS.
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It will be clear from considerations analogous to those of

Art. 89 that the operative symbols E and A like D (or

are distributive, commutative with regard to constants aud

each other, and obey an index law the same in form as thjrt of

algebraical quantities. Hence theorems hold good forfthese

symbols analogous to corresponding theorems for algebraic

symbols of quantity.

551. Secondary Form of Maclaurin’s Theorem.

It will be wident that the value of w^en #=0, is

pi or zero, according as p is equal or unequal to q.

Hence, iff(z) and F(z) are functions both capable of expan-

sion in positive integral powers of z as '2,anz
n

,
say, and

respectively, we shall have

.

*heref°re =

This theorem may be written

/Qm-fQm
Now, Maclaurin’s theorem may be written as

m=m+^m+t ^°>+s -<w
y"»+-'

*'

and therefore may be transformed by the above result into

1 which Dr. Boole * calls the secondary form of Maclaurin’s

theorem, and writes F(x)= F(1)V? • *

EXAMTLES.

1. &ux=(E- \yux=iE" - -...+( -i)»K
1

.

2i
'

—ux+n — nux+n- 1+ —g-^z+n~2“..+(•"! )
w
w*.

2. ~=-^-u=\og(l+A)u [foreI>=I+A]
• da? dx

-i*-T +T--
* Finite Difference*, p. 22.
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(See Ex. 11, p. 80.)

3. Prove Apxm=(x+p)
m -p(x+p - l)m+P(P—-^\x+p- 2)

TO - . . .

.

1 • 22

4.

'Vove F{e?)=F(X)+F(E)0.x+F(E)&. ...= F(E)4>'‘.

* [Hersohel's Theorem.]

5. Deduce the secondary form of Maclaurin’s Theorem from Herschel’s

Theorem.
«

552. Many other curious results may be established by

means of these operators'.
t

For example,

1
1 i 1

, 17 2 n 2?
,
n &

and writing for z the operator hD wc have

and therefore 1+Eh+

E

*+ . . . +EiH~w E"h -1

[(M)"1 -
J
+S*

/,'S(AZV+-JiS“" 1}-

Applying each side to the function <f>(z) we obtain

"1" "b 24.)+ . . . + <£
#

{.r 4*(a— 1)4

}

= + »A) - </>(•<•')] - + »A) — </>(.')].

+|7°-ir^-[^+-) -m
or <£(o?+ w4.)

-

=

h[k<f>'{x)+ <\>\x+/0 + ... + <£'{#+(n- 1)A}+ |<#>'(#

+

nk)]

r=ao *2r

+2X~ 1 )
TBir-x^ ,

[</>
2r
(^+ w/t) - </>

2%r)]. [Poissos.]

653. Various Trigonometrical identities may be used to

establish similar results.
t

Ex. Taking the identity

cos 0-cos 20+ cos 30- ... to oo =£,

we have (0*+e~
i9)-{eii9+e~*l9)+(&t9+e ~*i3)-

\

Writing for e40 £he operator e
h
ax or Eh we get

(E*+E- h)-{E*h+E-™)+(E*h+E-*k)-...&l 9



MISCELLANEOUS THEOREMS. 48T

and applying this operator to </>(x) we obtain

<£#—<£(#+ A) - <}>(x+ 2A)+ <£(#+ 3A) - . .

.

+ <l>(x-h)-<l>(x-2h) + <j>(x-3h)-.... [Gregory. J

554. The expansion of e* in powers of ze~* by Burmann’s Theorem (Ex.
Art. 519), may be applied to establish a remarkable result due to Murphy,
as follows :

—

Dividing by e* we have

2! 3! 4!

Replacing $ by we have the corresponding operative analogue

l = e d*+KUtK)’,,
2! 3!

and applying each side to the function f{x) we obtain

A*)=A*~*)+i“ fX*~ 2*)+^ - 3/0+etc.

^ Examples.
*

1. Establish the series

P4^')=^+A)'i^+3A)+^ e+8A> "-"

.
-4>{x-h)+

-

3/()- - bh)+ . . .

.

[FBANfAIS AND GREGORY.]

2. Prove that [</>(# 4- h) - <j>(x- A)] - £[ <£(.r+ 2A) - </>(.r- 2//)]

+ J[</>(#+ 3/t) — <f>(x— 3/i)] — .
.*=

h(f>'(.r).

[Gregory.]

3. Prove that ~ { <p(x -f A)+ <£(#“ ~^ +3A)+ ^{x- 3/i)

}

+ l{^+r.A)+#v - 5A)! - ... = g<K.r)+p-^"(.r).

4. Prove that if a be not an integer

7r /(#

+

ah) — f(x- ah) __f[x+h) -f(x-h) _ 2 /(r+ 2A) -/(.r - 2%)

2 Sill G7T l*-*** 2*-^

* +3/(£±^). - etc.

5. If a curve whose equation is^j?, y)-=0 be subjected to a simple trails

lation in its own plane, its equation becomes

e*i*
+b
kf(xi g)=0 ;

and if the curve be turned round the origin through an angle u>, the

eqfiation becomes ,y)=0.
*

If both these operations be performed, is the orde# of the operation

indifferent?
[Oabmicha.l.1
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Taylor’s Theorem. Cauchy’s Method of Proof.

555. The following line of argument is adopted by Cauchy

in establishing Taylor’s series.

556* If any function of z
, f(z), be continuous and finite

between two given values of z
,
say z=x and z=x+h

,
and

iff(z) does not vanish or become infinite between those limits,

it follows that f(z) must be continuously of one sign, and

therefore f(z) continually increasing or continually decreasing

between these values. Hence f(x+h) —f(x) cannot vanish.

557. We shall next establish the result that «

F(x+ h) -F(x) _F
f

{x+ Oh)

f(x+ k) -f(x)
~ f(x H- Oh)'

supposing that

(a) F{z) and f(z) and their first differential coefficients are

flnite and continuous between the values x and x+h
of the variable z

;

(b) that one of the two F\z), f\z) (say the latter) does not

vanish anywhere between these limits.

F(x+h)-F(x)[

f(x+h)-f(x)
=

which is tlJherefore a function of x and h. It has been shown

that the denominator does not vanish, hence

F(x+ h) - F(x) - R{f(x+ h) -f(x)} = 0 ( 1

)

Let 0(s) = F{z)- F{x) - R{f{z)

therefore f(z)— F\z)— Rf\z).

Now, 0 and 0' are finite and continuous between the specified

values of z
;
and <p(x+h)= 0 by equation (1), also <p(x) = ().

Hence <f>'(x+0h) = 0, when 0 is some positive proper fraction

<Art. 1 26), therefore ft =
• f(x+0h)

F(x+h)-F(x)_F'(x±0h)
f{x+h)-f{x) fix+ Oh)

under the circumstances specified.

(If F'(z) instead of f\z) had been the one whose value'did

not vanish *in Jhe given interval, we should have obtained the

same result by similarly treating the reciprocal fraction.)
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558. If we add the extra conditions that all the differential

coefficients of f(z) and F(z) up to the 91
th inclusive are finite and

continuous; also that one of the two of each order does not

pass through the value zero between the given values of z, we
have the following series of equalities :

—

F(x+h)-F(x) _ F' (x+ Ojk)

f(x+ h) —f(x) f (x+ dji)'

F'(x+

0

x
h) - F'(x) _ F"(x+ Qji)

x
Ax+d\h)-fXx)-f(x+m

etc.
,

etc.,

F** l
(*+ 0» . ih)-Fn -\x)_Fn(x+Oh)

rA*+dn-ih)-fn-Kx) ~ Hx+eky
"v

where 6V 6.,, 03, ..., 0n -i, 0 are all positive proper fractions in

diminishing order.

559. In any case in which x— 0,

and ^(0)= F'(0)= . . . = F*~H0) = 0, (A)

and f(0) = /'(0)= ... = /“ -1
(0) = 0, (B)

F(h)_Fn(0h)m fn(oh>

where 0 is*some positive proper fraction.

560. Let <j>(a+ z) and all its differential coefficients up to

the nth inclusive be finite and continuous betweeif the values

0= 0 and 0= fc, and let

we thus have (C)

F(z) = <f>(a+z)-<j>(a)-z<t>'(a)-...- "
'(“)»

•

• •
• (D)

then equations (A) are all satisfied.

And if we put f(z)= zn,
equations (B) are satisfied. Also all

the imposed conditions as to the continuity of F(z),f(z) and

their first n differential coefficients are satisfied, and no differ-

entia^coefficient of f(z) up to the nth vanishes for a value of z

intermediate between 0= 0 and 0 - To.

Hence equation (C) is applicable ;
ajid since

Fn(z)=
(f>

n(a+z) i
and f’\z)=n\,

it becomes F(h)J^(a+0h).

Therefore by equation (D)
+ * hn

•
<f>(a+k)= + h<p,\a)+ • • •

+^_ j
y<P

n ~
‘(®)

+

n\^a+

the result of Art. 130.
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Roulettes, Etc.

561. Def. When a curve rolls upon another which is fixed,

as in the case of the description of the Trochoid family, any

point P carried by the rolling curve traces out a curve which

is call^i. its roulette.

562. Geometrical Construction of Normal.

As in Art. 393 the join of P to the point of contact is the

normal at P to the roulette. «- *

563.

A Special Case.

If the curve r=/(0) *. (1)

be rolling along a straight line, the locus of the pole can be

found as follows :

—

Taking the given straight line as the cc-axis, the radius

vector of the point of contact is the normal of the roulette, and

therefore, jf x
f y be the co-ordinates of the tracing point,

r=y*/l+y* (2)

Also y is the perpendicular from the pole upon the tangent

;

hence -* = 1
+

/j/2 tp'L

1 fdrV
Ade) •

.(3)

If r and 0 be eliminated between these three equations, the

differential^bquation of the roulette will result.

Ex. The curve whose polar equation is rmcosrnO—am rolls on a fixed

straight line. Taking this line as the #-axis show that the roulette of

the pole is doc=
j

-
1
j

dy.

Examine the cases m=£, ?n= 2. [Frenet.]

564.

Curvature of a Roulette.

The radius of curvature of the rouletto may be obtained as

follows :

—

Let A be the point ofi contact,* B an adjacent point on the

fixed curve, B! the point of the rolling curve which will come

, into contact with B
;
P and P' the two points on the roulette

corresponding to contact at A and B respectively, so that

PA % P*B are contiguous normals to the roulette
;
let them meet

in 0, say, #nd let P0= P, and iP=r, so that A0=JK— r.*

The reader will find no difficulty in constructing the figure.
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Let C and O' be the centres of curvature of the fixed and
rolling curves respectively at A , and px

and p% the radii of

curvature. Then, when G'R comes into line with CB, PR
will come into line with BO.

Thusi the angle turned through is either of the an^as be-

tween O'B' and CB or between PR and OB. Thus
}

A‘dB+A6'B'=A6b+aPB'.

NoW, * ACB= ds
, AC'B'=

da
,

\Pi P2

and if PAC'^tp, the perpendiculars* on BO and PR from A
are both ds cos0 to first order infinitesimals, hence

ds cos A a A tv ds cos <bAUB= 7
, and APB =

JrC— r r

Hence I+
1

Pi Pi R-r V

Ex. Show similarly that the radius of curvature of the envelope of a

carried curve is given by the equation

I
_l_

1 _ cos cos 0
• pi p-2 r+f) it-r

where r is the shortest distance from the point of contact to the carried

curve and p is the corresponding radius of curvature of the carried curve,

other letters remaining the same as in the preceding article, j

565. Prop. Let two curvilineal slots be cut in a lamina

and the lamina put over two given pegs
)
one peg fitting into

each slot . To find the envelope of a carried straight line.

Let y=fx
(x), y —f2

(x) be the equations of the slots referred

to, a pair of axes fixed in the lamina, (xv yx),
(x.2, y2

),the c0’

ordinates of the pegs distant 2a apart, and let the y-axis be

supposed to have been chosen parallel to the carried line,

whose equation we may therefore -.ake as x = h. Let A be the

mid-point of PQ, and let PQ make an angle with the x-axis,

and let p be the perpendicular from A on the carried line.

11

Then yx
- y%= 2a sin i/r,

and ajjssA—p+a cos \frt

y X2~h—p— a COS\/r. *

Hence the tangential polar equation of the envelopb is

2a sin p+a cos yjr)-~f2(h—p—a cos
\f/).
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Ex. 1. If*the slots be straight, say

g=A.v+B)
y=Cx+D)'

the result is of the form p— A.+

p

cos xjr+ v sin yjr
y

where L p, v are constants
;
so tliat the locus of the foot of the perpendic-

ular on q\e carried line is a limayon, and the envelope being its first

negative f>edal is therefore a circle. (See Art. 376.)

Ex. 2. Suppose one slot elliptical and the other slot along the major

axis, the distance between the pegs being the semi-minor axis. Show
that the envelope of any line parallel to the minor axis is oftie of two

circles, and that the minor axis itself passes through one of two fixed points.

566. Prop. Given three straight lines traced upon a lamina
,

and that two of them are made to touch two given curves. To

find the envelope of the third.

Let the three lines form a triangle ABC whose sides BC, GA
AB make angles xjsv xjr

2,
xjr respectively with a given straight

line. Let q> =f1{\]/)i p =ffxjs) be the tangential polar equations

of the envelopes of BC and GA.

Then
\f,l==yfs-f a \

a and /3 being constants known in terms of the angles of the

triangle. Also, ifpv pv p be the perpendiculars from any fixed

origin on the three given straight lines

ap
1+ bp

2
+cp = 2A,

therefore the tangential polar equation of the envelope is

cp= 2A - afty -fa) - hf2
(xjs

+

/3).

567. Since P-=P+^, and

we have by addition ap
1+ bpi,+cp=:2A.

dx/, *
dxf,*

Ex. 1. It follows at once that if pY
and p2 are constants p is also con-

'

st int. Hence if two of the sides of the moving triangle envelope circles

the third side also envelopes a circle.

Ex. 2. Similarly if two of the sides touch respectively =
,

jp= A.ty‘*f p'j the third will also touch a curve of the form p= + /a"

These are the involutes of three concentric circles.

Ex. 3. If two sifjes touch equiangular spirals with a common pole, the

third side will touch an equiangular spiral with the same pole.

Ex. 4. If two sides touch concentric epi- or hypo-cycloids, the third side

will touch a parallel to an epi-*or hypo-cycloid.
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Ex. 5. If two curves fixed in a given lamina touch two gffren straight

lines, show how to find the envelope of any straight line carried by the

lamina.

Hence show that the envelope of the axis of a parabola touching two

perpendicular straight lines is the first negative pedal of a certain Cotea’s,

spiral. f

568. Many interesting results in this part of the subject will

be found in Dr. Besant’s “ Notes on Roulettes and Glisettes ”

to whic^ the reader is referred for further information.

, Miscellaneous Examples.

1.

Sum the infinite series

(a)
1 1 1

2* + x2 + 3 2 + x2 + 42

(&)
1

P+V-,+
i

& + xi + 5

1

a +^ + -

and evaluate the results when x = 0.

2. Prove that if Jn(x) is the Bessel's function of the n0
* order,

.
= ( - hY^J^nU*)-

[Math. Tbipos, 1889. J

3. If 2*-(«» + *»)-!,

prove that %

3a?(aJ3y‘+'j/„ - (-l)’’ra! sin’‘+^|cosec"+1^ +^+ 2»+ssin^T+T0-^|,

where x + a = aj3 sinf 0 + „ )
! sin 0.v

\ 6/ / [Prop. Anglin.]

4. If y= (a4 + a2x2 + a:
4)” 1

,

prove that 2a,,+4sin,,+a]V
i

o

• = ( - l)'
,

w!|sin"'H0 sin^n + 16 '
T
^j
+ sin"+1$ sin^rc +l<f>-^

where x = a cos^0 + g^cosec 0 — a cos^6 - ^cosec <f>.

« [Pbof. Anglin.]

5. Prove that •
'

where P=xn - n(n - l)a.r "2 + n(«. - 1)(» - 2)(« - 3)*"v - ...

,

and Q= na?'~
1 - n(n— l)(n — 2)as

n-J + ...
. [London, 1891.]
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[Prof. Anglin.]

Prove also

sfCit) - [
p“s(*+ t) ‘ «*in(«+T)]/^‘-

6. Prove that

^
=e^P sin(&K + n<£) + Q cos(6a> -f n<f>)\/a;

w+1
,

where P = (ra;)
w - w(raj)

n_1cos + n(n - 1 )(ra:)
n"2cos 2<f>

- . .
.

,

Q = n(ra;)
w_1

sin 0 - n(n - l)(ra;)
w“ 2

sin 2<£+...,

r2 s= a2 + fi
2
,
and tan

<f>
— b/a. [Prof. Anglin.]

7. Prove that ( - 1)< fY^Y^ and (

-

1)»*“ £('cot"M arev 7
rc! dxn\ x )

v 7
ra! cte

n
\ a; /

the sums of the first w +

1

terms of the expansions of tan
_ 1

(a; - h)

and cot" 1^ - h) respectively in powers of h, where h = cot^a?.

[Prof. Anglin.]

8. If y~*™ x
and s =

c^,
x X

then (
- l)

n
£c
w+ 1

(ynsin x + sn cos x)jn\

and (
- l)V*+1

(2nsin x - yncos x)jn\

<,2n + 3 + (-l)n
j 2n -f 1 — ( — 1 )

n
, • ,

are the sums of
^

>—JL and
4

'
~ terms respectively

of the series for cos x and sin x.

Show also that the limiting forms, when n = 00
,
of ( - l)

nxn^yjn\

and ( - 1 )
nxnilzjn\ are respectively zero and unity.

r-** qo

9. If e*sin x- £ arx
r and e*cos x * 1 + 2 bjf,

r=l r=»l

prove the following results :

—

• mr . Smrsin— sin-- i

4 4 /

(2) -.+-ir
,+
Tf+ - +

(3) aH+ 0n-A + ‘A + • • • +

("1*1
y
= ^sin(w tan

"1 |)/w!

;

fcos^ + 2’""^in^^n!;

(4)
2*~ 1n

1
a
1 - 2n

"an
2
a
2 + 2n

“ 3
7i
3
a3 -...+(- 1Y~lnn“n

= (-l)"- 12^sin5?5, •

t|

* where nr = n(n - 1 ) . .
.
(m - r + 1 ). [Prof. Anglin. ]

10.

Prove that

(i.) vers" 1a;/>/2i t *-

1* 1.3 ^
,
1.3.5 a?

3
, ,

1.3...(2n-l) xn ^
3.4 5.42 2!

+
;7.4» 3!

+ ,,# +
(2w+l)4n n!

1
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(ii.) (vers
_1

aj)
2
/2

_ rrA \
,
1-2 a?

,
1.2.3 a*

,
1.2...(n-l)

,

3 2
+
3. 6 3

+
3.6.7 4 3.5...(2n-l) » + "'’

[Pbof. Anglin.
11. Establish the results

^ A . . _!_a a . 2.4 . .a 2.4.6 .

(a) 2= sin 0+ § sin3 0 + ~ * ein60+ ~ * ”
sin70Jp

.

' ' cos 0 a 3.5 3.5.7

4 sin 0

g tan20 2 tan40 2 . 4 tan60

3 “3 T“ +
3T“5

7~

[Pfaff.]

[Pbof. Anglin.]

12. Prove that for all values of « froih 0 to 7r inclusive

7T . v sin jc sin 3a; sin 5a;
,

8*w
- x>- is-+-8r-+-gr-+-*

What is the sum of the series for values of x between ir and 27rl

[London, 1891 .]

13. Establish the results

(<*)

it_ -..I 1.2 1 .2.3

2
+
3
+
3.5

+
3.“5.7

+ "‘ ’

/iv 2jt , 1 1 1.2 1 1.2.3 1,
' '

3J3
+
3

'

2
+
3.5 ’ 2s+ 3.~5.7 ’

2
3+ ,,

*
ff
2 ,1 1 / 1 \ 1 1 . 2/1\* 1 1 . 2 . 3/l\8®
9

+
2

’ 3W +
3

’ 3.5W
+
4 *

3.5.A2j
+ ‘*'

1

/« 1 1^_1_

*

' ' 32~l3_ 3s
+
53 7S + *

1 a ta* du A cfv
, AR K *:® +a-“- 0

' ”'d

prove that the product uv satisfies the differential equation

*^V+ 5*^' + 4^' + 4w= 0.
da* da?

y

Hence show that the product of the “ones

1 +
1 2
+
(T72)2

+
(1.2.3) !!

+ "”

• 1 ,

1 2
+

(1 . 2)
2 (1.2.3)2

« X2 X4 X?
A v:. T 7

is equal to
l2.2r (1.2)2.4! (1 . 2. 3)‘2 . 61*

15. Prove that =y^_£_).

+ ... .

[London, 1891 .]

[Coll. Exam.]
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16. Evaluate the expressions

when x=oo.

17. If
*

1
prove that

and
d(a^+ bx+ c\

dx\ ex+f J

y = sin(m cos
“

n y-+i_ 4n2 - w2
.~

4rt + 2

[London.]

[Oxford, 1889.]

18. Show that if m, n, p, q be positive integers, the limiting value,

when x~y -z -a of the fraction,

xm(y
n - zn) i i

,

m
(z
n - x11

) + z
m
(xn - if), „

xp (y
q -zv

) + y
p (z9 - x9

) + zp(x9 - if)

mn(m - n)am+n_p_q

])q(p - q)

19. Find Lt.,
n

^\Jc~x

20. If

(p - q )
[Math. Tripos, 1882.]

1 .2.3 ... m 1
(x+ 1)(;«+ 2)...(* + «)J [London, 1891.]

u = </>(#„),

show that rf^ + 2xy^ + - J’,
Ba-i

ya*% J
?nf F"J F?

where the function F= c/r 1
.

21. Prove

0 «
ft

9
t

0 0 *i. x
2, ^3* • •*>

dx
T

a®
2 3*3

’ 3*„
*i. * * > Xn -

d
3*„’

0
-1 9

; _ * *i, . •> Xn -

dx
x 3*2 a»*-i . . .

.

0

3*„-l’

0
3*„’

3
(

dx
x

0

0OL
*3> *4, • X\

d 0 0 0

3*2* 0tf
3 0#4 'dx

l [Oxford, 1890.

22. If
i

x\i X2’ X3* Xn
i

i

XrO XV X
2'

Xn- 1» Xn)
XV

prove that

X2> X3> X
A? * * *

» ^1
!

0rw 0rM cfw

3*i
r+ 3*7

+
^8r+

’"h II 1 1
'n(r— l)!/(*j + *,+ ...+^

provided that r is not a multiple of n.
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23.. Prove that the maxima and minima values of the fraction

• aa? +by* +c + 2hxyr + 2gx + 2fy
a'a? + b'y2 + c' + 2h!xy+ 2g'x+ 2fy

are given by the roots of the equation

a-a'w, h-Ku
,
g-g'u =0.

h - h'uy b - b'u
, f—fu .j

g - g’u
,

c - c'w [London.]

24. Show that if a triangle of minimum area be circumscribed

about aft ellipse, the normals at the points of contact meet in a point,

and find the equation of its locus. » [London, 1891.]

f m Qy& X -
1 2{/«3C *4“ C

25. If g , y, c are real quantities, the fraction 0 - --—- - — has* ' ^ 1 x2 + y* + 2ya; + c

two critical values or none according as c is positive or negative,

and interpret the result geometrically. [Oxford, 1890.]

26. Find the maximum area of a triangle which is such that the

sum of the squares of the distances of the angular points from the

centroid is constant. [Oxford, 1890.]

27. From a point P on an ellipse PS, PH are drawn to the foci

and produced to meet the ellipse in Q and R
;
PN is the ordinate of

P. Show that when P moves up to one extremity of the major

axis, ultimately QR : PN 4e : (1 - e2). [Math. Tripos, 1882.]

28. Ay B are two given points and KL a given straight line, find

a point 0 such that if OC be drawn perpendicular to KI#the sum of

OAy OB, OC may be the least possible. [Coll. Exam.]

29. Given the volume of a paraboloid of revolution bounded by a

plane perpendicular to the axis, find the maximum sphere that can

be inscribed in it. [Coll. Exam.]

30. PF is a double ordinate of an ellipse, and from F is drawn a

perpendicular FQ on the tangent at P. Find the positions ofP for

which the square of the area PQF is a maximum, and show that the

value is really a maximum. LOxforp, 1889.]

31. With the foci of an ellipse ai '.ontres two fixed circles are

described so as not to intersect the ellipse in real points ; show that

the point on the perimeter of the latter at which the two circles

subtend equal angles is that for which the sum of the four tangents

from it to the circles is a maximum. [Oxford, 1888.]

32. *If the equations of two curves are given in rectangular

co-opdinates, show how to find the points on the *first curve the

normals at which will touch the second, and determine^ how many

such points there are. [Math. Tripos, 1885.]

B.D.C 2 1
•
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33. Prove that for any constant value of p. the family of curves

cosh x cosec y

—

p. cot y = constant

cut the family p coth x - cosech as cos y = constant

at right angles. [London, 1890.]

34. Jn the curve whose equation is

xy2 -y = scP + 2x? + x + b

the hyperbolic asymptotes are defined by the equations

»-* +i+i

35. The eqtfotion 'of a curve is

y
2(x2 - y

2
)
- 2ax(x + 2y)(x - y) - a2

(os + y)
2 + 2a4= 0

;

show that the parabolic asymptote is

(y - a)2 - 2a(x - a),

and find on which side of the asymptote x = y the corresponding

branch lies. [Math. Tripos, 1882.]

36. If the equation of the curve be

+^ z )
+ 2

*(f)
+ ••• = 0

where the equation <j>(z) = 0 has two roots equal to /a, and /a is not a

root of ^(s^=0, show that there are a doubly infinite number of

parabolas rtleeting the curve in three points at infinity, and a singly

infinite number, meeting it in four points at infinity, and satisfying

the condition of indefinite approach, and that the general equation

of the latter is

(y - px)2
tf>\p) + f(y - px){3f(/a) -rWMWW} + 2^(/A)a = c,

where c is a constant. [Math. Tripos, 1891.]

37. Prove that when a curve is defined as the envelope of a line

lx + my = 1 moving subject to the condition m) = 0 the line is an

asymptote approached by the curve at one end, but on both sides

when the values of l
,
m are those given by the equations

an<
^ \dl

+m
dm)^ [Math. Tripos,*1888.]

38. For any plane curve prove that \
1 d2x

*
4s
y d2

y dPx

p*
**

de2 dtp ds2 ds* |£oll. Exam, 1876.]
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39. If the square of the radius vector be a rational integral {trac-

tion of the curvature of odd degree, then the perpendicular on the

tangent is one of even degree. Math. Tripos, 1882.]

40. Prove that if in the equation of any polar curve we put

c
n_V=rn and O' — n0,

the new curve will cut the radii vectores at the same angle <f*as the

old curve
\
and that if p, p

' be corresponding radii of curvature

\ • nr* r , . ,_ - - _ (n - l)sm 0. [London, 1887.]
r P

»

*41. Show thtt the centre of curvature at any point^of an ellipse

is the pole of the tangent at the point with respect to the confocal

hyperbola which passes through that point.

42. From E the centre of curvature at any point P of an ellipse,

two other normals, EQ
,
ER are drawn. Prove that the locus of the

point of intersection of QR with the normal at P is an ellipse, and

that the line QR always touches the curve (a?/a)^ + (y/6)* = l.

[Math. Tripos.]

43. Show that as we pass along a curve the tangent turns round

'more quickly than the radius vector, when logp changes its value

more rapidly than log r. Prove that in all curves for which these

lines turn round with equal speed the radius of curvature is propor-

tional to either r or r3 : and hence show that these cunjies must be

of one of the forms given by r = cenB or r2sin 20 = c.
*

[Mathi Tripos, 1888.]

44. The envelope‘of a family of equilateral hyperbolas is a lernnis-

cate if a vertex lie on the circle r = c cos 0 and the pole be the centre.

[Coll. Exam.]

45. Find the equation to the envelope of a circle which rolls on

#
an ellipse; prove that the area between the two enveloping curves,

formed by the circle rolling on the inside and outside of the ellipse

respectively is twice the rectangle formed by the perimeter of the

ellipse and the diameter of the circle. [Coll. Exam.]

46. A three-cusped hypocycloid moves without rotation in its

own plane and always passes through a fixed point. Show that the

tangent to the hypocycloid which is at right angles to the tangent

at the fixed point envelopes another three-cusped hypocycloid, and

determine its magnitude and position. [Math. Tripos, 1891.] .

.47*. Prove that the envelope of the latera recta <Jf all parabolas

inscribed in the same triangle is a three-ousped hypocycloid.

£ # [Math. Tripos, 1887.]
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48. Show that the axes of the conic of closest contact at any

point of the curve whose intrinsic equation is

>-a)V= &2
,

are equally inclined to the tangent and normal at the point,

[Math. Tripos, 1887.]

49. Show that the equation of the corfic of closest contact with

the cuAre y =f(x) at the point whose abscissa is (x, y) is

2(XY-xy), Y3 - y
2
,
2(Z- x), 2(Y--y)

x
, y +xyv yyv 1, . ;Vl

1
, 2^i + ot/

2> Vi +w* 0, Vi

0, %2 + • %!% + VVv 0, y»

0, 4y3 + xyv bj<!h + 3y2
2 + yyv o:

50. Show that the locus of the centre of the conic of closest con-

tact to the curve y
3 = x2

is 32?/3 = 5 a;‘
2

. [Math. Tripos, 1891. J

51. Find the equation of the conic of closest contact at the point

(x, y) of the curve y = x
n

.

Show that the centre of aberrancy is at the point

-2.w +
2n - 1 7i -

T

and show that its locus is similar to the original curve.

'

• 52. Ifp and q be positive integers such that q is not greater than py

and f(z) auy function of z which is continuous and finite, as also its

differential coefficients up to the nth
inclusive, between the values x

and x + h of the variable z, show that the remainder after n terms of

the expansion off(x + h) in powers of h nfay be written

9 being a positive proper fraction.

Deduce the forms of Schlomiich and Roche, Lagrange and Cauchy. •

[Memoires de i/Academie ... de Montpellier.*]

53. Show that sin(7&+ 1)? is the limiting value of ^
J2 ^

aa^Vsin
-1
®/

when x is zero. ’ [Oxford, 1889.]

54. Show that one of the roots of the equation

z3 - 2z2 + z - 452 = 0

may be expanded in the form

1 4 26{1 - 6
2

- b3 + —- ’ V

-

1
2! 31 4!

[Oxford, 1888.]

See TDdhunter, Diff. Calc., p. 404, *
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55. Prove that

cos ax = 1 - ax sin bx - a^a ~ ^xJcos 2bx + a^sin Zbx

56. If

then •

where

+ «(o - 45)
fl;
4cog #> #

« *•

[Math. Tripos, 1891 .]

S + 2^|+2(y-y^+^ = 0,

^7, + 2wy2
-J^ + 2(v - -y3)^ -f u2v2z = 0,

1/2 tfw 'ovdu2

u = X1J, Vs
1

[Coll. Exam.]

57. If the co-ordinates x and y be transformed orthogonally to f, rj

and V be any function of x
, y, then will

/d2vyd*r d*F
dx*

'

3y2 \daidy) d?
'

c

y

\3£31?/

58.

A curve PQ rolls on a straight line Ox, and P is the point of

contact. If C be the centre of curvature corresponding to P and

CT the tangent to the locus of G meet Ox in
r
J\ prove

• tan CTx — Pl
t

P

where p = CP and p {
is the coiTesponding radius of curvature of the

evolute of the rolling curve. *

Hence show that if for the rolling curve

* P = </>(«)»

then the locus of the centre of curvature of the point of contact will

be .y
= <£(*).

59. If an equiangular spiral roll along a straight line, show that

* the loci of the pole and of the centre of curvature of the point of

contact are the same straight line.

60. if a catenary roll along a straj 'lit line its directrix always

passes .through a fixed point.* **

61. Ifany of the class of curves

• r
m = a"*sin m6

roll along a straight line, the radius of curvature of the path of the

pole.*
=™ + 1

r.

- m
Examine the special cases

* /a = — 2, - y, 1J 2.
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62. The curve r
m - amsin md rolls along a straight line. Show

that the intrinsic equation to the evolute of the locus of the pole is

s
m = aw^l -f^ sin \j/. [Coll. Exam.]

63. If the curve r«6sin -0 roll upon an ellipse whose axes are
t a

2a, 26, and if the pole coincide originally with the extremity of the

major axis, it will always lie on the major axis.

64. The equation of a curve is given in .the form r
2) = 0,

where rv r
2
are the lengths of the normals OP, OQ drawn from any

point 0 on the curve to two fixed curves. The* perpendiculars

drawn from tho centres of curvature at the points P and Q of the

fixed curves, at right angles to the normals at P and Q respectively,

meet the normal at 0 in Nj and N
2

. Prove that the radius of curv-

ature <r of the locus of 0 is given by

where a, (3 are the angles which the normal at 0 makes with OP,

OQ respectively and the differentiations on the left-hand side only 1

affect/. [Math. Tripos, 1888.]
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CHAPTER I#

Page 7.

1. (i.) co
j

(ii.) ~ ; (in.) co. 4. +1
a a

2. (i.) £ ;
(ii.) 2. 5. J.

3. ao . a.

Page 17.

11. *0027 of an inch

CHAPTER II.

Page 22.

]. Xx+Yy=cK 3. Y-y=y(X-x). ft. cos
‘2x(Y-y)^X-x.

2. **+*&-l. 4. x{Y-y)=X-x. 6. (l+**)(F-/)=jr-*.
a2 cr

Page 24.

1. sec8#. 2. .

1
„• 3

1+ A’2

COS X ,
• -

. .7
• 4. -

HllttP

1

xjar— 1

Page 27. •

1. ar2. 4. c*. 7. ia'^logea. 10. •

2
o •

sm2#

1 /i
y .r

e«*

"V*
. I.*,

2

• !+#»•
11. •t’XIog^+i).

3. *
. . 6. a8h,;ccos^ logca. 9. -tan#.

Jat+X*

12. x,lll*/coBai
, ,

sin xl
'.l°gr+- ).

14. (^yCIog y/sin x+x cot x).

13
k
(sin #)*{log sinx -f*

x

cotx } . 17. (0, 0) aud (2a,
4a8 \
36s/

•

18. (± /

*

\ Jcfl+tr
± »!-).
Ja2+ 0*'

•

f)05

7. 3a2.

«• (>•) 1 5
(ii )

9. 4.

o-j

a
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1. (L) log sin x4-

x

cot ,r. (iv.)

Page 37.

-a3

. a3 — 2ofi

^7Z-,i'

<*%?('-$

x^Jat-x*
14-riug

(v.) a 2 cos^.log/e.

(vi.) ^ ^ cot v (sin ^)v(log sinM+w cot w).

1.
2jx

% -JjH.

3J.
c

4. 1-

Ju

CHAPTER IIJ.

Page 51.

8. 5cos(o+5^).

9. 57W7
n~ 1cos(a+tj?n).

10.
cos^^

.

2X6?
'

15.

16.
1

^l+(loga?)^

1

5. cosh x.

6. sinh#.

11
COS#

2^/sm .r

12. _.
coa^_

4jx sin^#

17. ^cos x3
.

.180

18. log #+l.

19. £log(eon-
x

sine*
13. pqafl

~ ltos ^sin*” 1#*. 20. cos e*. e*. log x+ -

—

7. (ba$-6a)/4e},W. 14. -,E=,.
• ^/l —

21 ^°g\/cot _ 2 tanker*
^

cosh x sin 2#

• 22. (x+a)™-\x+h)n-\(m+ri)x+mb+na\.

^+ 2j? - 2 ^/«2 i «2\ n" 27. tanh J?.~ (#+l)2

l h"
24. ±(a+x) w

•

n

25. —(as +a;a)

1

“
n
.

n

sinh x
250. . .

2^00811 #

29.

j2-aP
30. -

28. sech 2x.

2 cosec 2x

31.
C08#

s]2 log cot x- (log cot xY
1

14-sin2# * 14-#2
’

x2 -2x%-2xi+l

33. -

34.
2x${l+x)(\+x*)

jl-x*

37. cos(e,l?loga?)e*log(^e*)N/l
-

1

xja?-l

35. sinm_1# cosw
- x#(m cos2#-w Bin*#).

i

log #*

38. ~

(log #)2 - sinolog

x4 -2a2x2+4a4

<i-#;*a4%)*

3#4-aft

40.

41 .
-

(#*- a3)^#2- 4a2)^

24- 2#-#®

2(1 - #)£(1 +x +.r*)f
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48. *>jA.
1 +^ 46.

ab

43. log(£).

44.

«• grHO'+j}-.
50. 2e‘“~

14

o’+x^tan-1?j

C0B~lff— ,&s/l -jg*

4ft
a aln(a coaec-1^)

Xs0^1

49.
6 + o cos #

«?+*»/*

* 61. ea*|ocos(6tan_,4;)-—^sm(6lAn_,
4f)|.

RO xaT'Q+cx \og9a)
52

\+d2cxx*
*

53
x *°&»g 8in(logox/a" -f #“)

(a2+

#

2)cos2(logflX/a
:!+x*)

60.

>/5(l+4#)

54.

55.

56.

57.

58.

2

1 -**'

6

r/
i *

# log X
1

X logx log2# log3# . . . log*
1-1#

__ 1

a+tcos#

59. —

—

1

ei-w
62. 10*. lO^logelO)2

.

*

63.

64. £**.#*(log#+l).

65. #•*. c*|log#+ i|.

66. #**.#*| (log #)
2 -f*log#-f Ij.

i-2
67. #*logar-#* log-.

Jl-x* 2jx^x2

68. (sin #)°°,af - sin # log sin#)- (cos xY[ux(-
n2*- cosx log cos# }.

* sin x ' \co8x ° )
«

69. - (cot x)001*cosec2# log e cotx - (coth #)
coth*cosech2# log e cotli x.

70.

71.

log(a'^«“.

e

* )+tan'1(ora
vr*

b**)

—

l+#i l+a20*#2^* 2#j(i

+

x*y

72.

73.

1+#2

(sin^+cos^Vl-sin^+cos^
' X #/\ x xh

a
>2

N/i-#
a- 2y# #

Atjxjl—X?Jjx+Q08- lx(\ +sfx+ COS-,1#)
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74.
l+2Jx 2*/x(l 4* v/.r)(l + 2^‘)J

76. -y cot*(1+2 cosec2^ log cos x). 76.

77
‘ (

1+3 {
lo
g-J---|i}+^"V+ 1 -!og4.

78. ? 'r~&y -ay
a

(a?+yi)sac% - bx
b

79. cos x cos 2x cosh/eca*\

«o. -“+£
hx+by •

81> 2L( «
2x\a+b.vnJ

89 y tan#+ log siny
log cosx-x coty

83. x(3+ 2 tan log x+ tan2log x).

84 yfr-y).

86.

X - log .V

86.
y lpgy i+x log* iogy
xlogx 1 — .r logy

gy .?{(# 4- bx)y^~ bx2
} .

^ ^{y-^X^+kr)
’ *’

<7# 4-/y/4-ff
’

&r4-% 4-/’

89. #.

88.

^ for(l +y2
)tan . e^~ly

1 4-y2 - log sec2#3
. e
Un_ly

Q1 l°gioe

2#2

(1 +a2cos2bx){x2 4-a# 4-

a

2
)
n~ 3£w(2# 4- «)log cot ?- cosec x{x2+ax+

«

2)~j

— ab sin bx

93. r/
2cot - 6‘2tan ). 94. ^8tn-1*^log.r4-i/lz/ sin -I.l

#^.

95.

100. J2-

96 -
#* ^/l^#2 - ^/T-#2

??(1 4-.^tan"1^ log ta n
- 1# 4-x

97. -.
x

2»+3

_1
2 * 99. 1.

(1 4-#2
)tan

" l
x(>J

x

cosJx-3 sin Jx)

110. -j£“ f~-
fe<+5'r°- - (Hz4+ 4^)sec- 1^1.

4^+x^.2xz^sis-l J

121. Ar=m(m-1) ... (m-r+\).

123. * rx i"y” 1 (assuming rpq> 1).n- 1

CHAPTER IV.

Page 63. «.

3. --L|6ncos(6jr+^-^.4"co8^+^ + 16.2,,co8^23:+^)|.

4. - JL|6"cos^&t+ ~T^ +3»cos^+w^ - 2cob(*+~-)
J.
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5.
I|g

j8-co8(&r+^)-4.4-co9(4i;+
f)}. !

6. I|2"8in^2j;+^+4n8in^+”,r)-6^in^eii?+-^|. <

7. 8s*. S—1

.

|l+29cos^2*+w

jjJ.

8. tan-1^ -(a2+96s)^sin^3Jtaf+» tai^
-1

^j
J.

9. — ^^(34)
aco8^6^+Mtan~,

|j+(18)
Tco8^a*+

,

^-2(10)Ico8^a>H»tan-1

^^J
>

Page 64.

i < V . _? L_ X
a— b ((# — a)"* 1

(&•— b)"* 1 }'

9 (-i)"n! J 1 _ i"
+
i )

7 ((ir-3)"+1 (3i-2)"+i r

3 (-l)"»Jf JL A l
2a \(x~a)n+1 (A’+ a)n+1 j*

4
3(^+ 1) + 4 4 ~]' ;

L 2(*-l)* +:
* %*-l)“+3^>-l)n+1 (*-2pJ

Page 65.

1. ^ r +1)0 sinw+1 0, where .r=

a

cot 0.
a1l+-

2. ^ —^—^sin nO sinw0, where x—a cot 0.
an •

3. (
— l)

u
w! cos(w+ l)0sinn+10/an+1

,
where x—a cot 0. \

4 J )

2 1 (a+x)
n

(a-x)
n
j

f
'- ^3— a-aRil,(M +

1

^=«cofc^.

(- L)
,,»i!r8in(«+l)08in” +10_sin(7i+ l)^smn+1<^"|

’* t?-FL 6n+2 " a,,+i
J’ ,

where j*= b cgt 0= a cot </>.

7. 2( - l)w_1(w - 1) ! sin nO si

n

n
0, wnere x— cot 0.

8. (
- l)

M_1(w - 2)! sin”*^ cos 0 cos uc
{

i tan 0 - tan ?&0}, where #=cot 0.

9. (
- iy*“J(w — 1)! sin n0 skin0 cosec”a, where cot 0=0-’ cosec a - cot a.

10.

(*- l)"w!
|

_
l

1y„Tl
+ sec"+2|sin(»+ l)0sin" +I

0
J

,

K

)

where )cosec 0.

Tl. (-Ji-f.?—)
+
w!{sin(?i4-l)0sinw+10-siii(w + l)<^siii

w+1
^},

2a \a*Jo/

where * x=-^L-cos( 0-^ ) =-r-
a

cos(<£+^Y
sm0 \ 6/ sm</> 6/
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12. ( - 1)V.jsin(tt+ 1)0 sin
n+1

0 + sec
w+2

gsin(?i + 1>/> sin
n+1

</>|,

• where #=cot0=—^cosf 6+~ ).

sm
<f>

\
T

6 /

Page 69.

1. j/fl=aB
“2

t
,rtI{a¥+2M^+w(n- 1)},

2. yn=

a

2#2sin
^
ar+ 4* 2nax sin

^

+w(?i- l)sin^c^+-t~
27r

^
j.

where z=*x\ogea and wr=w(tt -.)... (w-r+ 1).

' 4 y"=S^n-7)!

(a2+^^ain(^+rtall
'a)-

Page 74.

y*

j
3. y3=aVjr(^+ 3).i. y.,=2(izin

(1+.^ A’

If r< w, yr= «(»- J ) . . (

n

- r+ l)^"~r
.

If r = w, ?/r=w!. 13. y«*a"+W*.
If r>w, yr=d.

21. If m be even

r=’*-l cosf—^+w+l

\ J»

where

and}f m be odd

cot <£r+ cot—= - cosec—
m a ?/4

m-1 COS^?^*f W+l<^r)

a y„«M!(log*+l+^+...+^).

1 , Z \ 2

and the same scries with cosines written for sines. 1
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CHAPTER V.

Page 80.

7. y(3“-3)!H-I)V and +^ 8ts! 8»J

9.
2

10. (a) tan-1^ = tan-1^ - tan" 1#= etc.

(6) tan”1*^-^ =i tair J#= etc.

(c) sin-1--—,= 2 tan'1#—etc.
l4-a~

(d) cos"1'?
7 ~-'27

_1
= 2 cot” 1

.*' -=7T — 2 tan- 1.r= etc.
#4-#

Page 85.

* ’(*+f+s +->
4. Double the series in 3.

5. Treble the series in 3.

0. tan-1 = sin
-1^= etc.

JT-ar

7. sec' 1
-— --= 2 sin

-1#=*etc.
1 - 2\ar

8. sinh”1
(3a* 4- 4a

3
)
= 3 sinli

-1#= etc.

9. Expression = .V sin
-1#2= etc.

Page 100.
#

11. i +^+^%
3̂
7^+wV- 2^+’'(f

^

'

1*X»
,
rA^+...

12. The relation between ffhree consecutive coefficients is

2(n 4- 1 = 3an 4- (2rc - 1 )a„_

ia.
4 2 4 12 #

33. mx-m(m~ 1X”t~ 2
)f3+w(w- ~ ~ 'JXm~ :iX»>

~ 4)rt_
3! 5!

CHAPTER VI.

Page 133.

«

ft /i \ __ 1 + 4xs fife __ 1 4- 2.v /g\ dx 1 — 2s (is^

J

' ' iiA~ 1^22 ’ 3a 1-22 } dy 14-W r/?y 1

/g\ dx_ \-Zz dy_\+\xz

/ ' ' (is 14-2A* (is 14-2a‘ •

h _ a3 • _ a3 -.-2a3

^ 9
-
xy2’ *y .

•'y
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2. (a)

(8)

«

« 2T.

12. f:az

08)
-grig?.
4y* - 6olr

/ « y tan *+logsiny
logcoso?— orccfty*

Page 137.

_ax+hy
hx+by'

_y*logy •¥yxM
^— (q?+y^^log gQg+y)

i*log o?+ o?y*
-1 — (o?+y)*+>log e(x+y)'

x*-ly*+ l+a? . y*log v --os^^COBy ‘-y°gx . tyUl
g XX
o^y-1 *#*

.
y'log ar+^^^iog a? . 8n y—

—

y

dv dv_dV
m
dv

__
dx dy 'dy dx
du

%
dv Br

*

Bo? By 0y Sr

sin ^ ^
c—

&

cos z

cosy c — b siny’

14.

cV4
. _

dx

_ _/w_n W"1

3y3z ^ Vc"

*
.
qt

.

dx a (s.y~
l

-Jty*

18 —2 a^+y
2

c (aV+b*y2)i

CHAPTER VII.

Page 147.

Ex. 1.

(1) Aojf Fy=c2
.

(2) Ty= 2a(X+.r).

(3)
X+ F=2.
* y

(4) Y-y— sinh -(X— x).
• c

(5) X(2xy+y2
)+ F(o?z+5o?y)— 3a3.

(6) Y—y=cotx(X - x).

(7.) X{a?- ay)+ F(y2 - ax)= axy.

(8.) Z{2o<or!

H-y
2)-aao?}+ Y{2y(x2+y2)+diy}==a\xt -y2

).

Normals.

d)^=-
r

.

o? y
(2)

A
2r+i7-=°’ etc-

Tangents are Y= ±
8 8

Normals are F= +
R^X ‘

41’

+
§s*

4. (a) JParallel at points of intersection with ax+hy=0.

XPerpendicular at points of intersection with hx+by=0. \

(ft) Parallel at
^

; perpendicular where o?=0.
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5. (a)
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J
Parallel at

[Perpendicular at (0, 0), (2a, 0).

[Tangent,
-j a b

[Normal, cue sec 6 — by cosec 6—d2 - b~.

(

06 0
Tangent, x sin ^- ?/ cos |=a0 sin

|.

Of) f) f)

Normal, x cos %+y sin ~— a0 cos ~ + 2a sin -.
2 2 2 2

Tangent, x sin 4+ Ilf)“ l
rcos^i^0=(A + B)sin 4 0.

*
&

2il 2/1 2B

Normal, x cos 4.^140+ Y sin — B)cos 4.Zyf).
2Ji 21} 2B

51S

{

For a]

For a

- 1

r2= a?cotr0+ d-sin2
#.For an ellipse,

rectangular hyperbola, r2—

a

2cos 26.

- 1 - i - I «>., tliev must be confocal.
a b a b

J). The axes are tangents at the origin. Also at the point (2^a, 2%a)

the tangents to the parabolas make angles tan-12^, tan'^'S re-

spectively with the tangent to the Folium.

4 Pack 149.

(a) fw* ±by. (/3) x—0 and y= 0.

Page 152.

•

1. . 8. Area,=12/airy.
J^+.v" #

Page 177.

Kx. 18. p'J= 9r/ ,J(r- —d2)i(r2+ 1 5a2).

CHAPTER VIII.

Page 191.

1. .v+y=~. b. r=2o.

(y) ax— ±yjb* -v<2.

* «
a

9. n— -2
; n— 1.

2 . jL'+y—O.

a. A’*t?/=o.

•4. y—0.

5. ,r=0.

11. x=a, y =a, x~y.

12. x— ±a.

13. .r=0.

14. x =a.

15. .r=±l, y~x.

7. .r+y+ a=0.
8. jp=(), y =0, .r+y=0.

9. y=0.

10. x— ±a.

20. x-2y=0, #+2y=±2.

n7. a + 2y=0, j?+y=l, x-y= -1. 21. ,z’+y=± 2^/2, #-h£y+2=0.

18. .r«0, x—y=Ot x-y+ 1=0. 22. y=3#-2a, #+3y= ±a.

19. y=0, *-yf
*~y±l.

#
E.D.C.

If* *=0, jr-±(*4-|).

2k
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.’

Page 192.

* 1. .J'
3 — + ] ] j'y- — G)/1= .r.

f>. ~ if
1
)
= /jt(^

2 - //^(.r3 -fyJ - a2
).

»»2 i/2

3. a.*/ =i.

Page 198.

1 . x= ± a, ^= ./. Above.

f
f //= .// + «, *f~— x - it, x—

a

.

2.

*•] In the first quadrant above the first. In tlie fourth quadrant belo^

the second. 1

Page 205.

1. 0- 0. 2. r sin 0— a.

3. n / sin
^
0 -^

^
= a sec kir, where /• is any integer.

4. / sin 0—a. 5. r cos G— m
2<t. 0. /’sin0=

• 2 #

7. r sinf ~ where £ is any integer.

8. ))

0

— /"7t, where / is any integer.

Page 200.
*

1. (i!) .<*-//. (ii.) .«-=4r, .r+y-O.

h ±o, ./• J//T«=0, + ^
=

r». — 2y 1 4^
/,

= 3y+ 1

3

g, — //= r/,
.*• -

//= 2a. f>. ± //>/.2= ± S.

8. rsin0— ft, /•»<»s$— 2o l)7r.
1

* ?”±1t /
9. /• sin 0=rt, /• cos 0— mlae 3

/
(2a 4- l)7r. 13: .r+,y+ a= ().

18. .'i
. ) if— 0, x— //

— a= 0, x+ ?/ -\-a— 0.

22. (.ir-yJ)
a-4/ + ?/=0.

23. x~ ±<f, i/----b, y= c.

28. 2y- 9c= 0, y4-2tf+|=0.

3f ). Linear asymptotes y=.r+ 1 , y—x 2.

Parabolic asymptotes {tf-x+ *)“4-2./=0.

1 ij. (.»:*-fY^A.c or r
3=a3 -

c0* 1*

cos-20

2f ). 2y%ri - //-) ~ 3«:U'.

21. 6r - ?/)%r+y - 1 )
2- (x+yf= 0.

CHAPTER IX.

Page 219.

8. Concave. 12. x-7 and ./•=*!.

to

is
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Pagr 233.

6. A single ramphoid cusp.

8. A node at (1, 2). Directions of tangents ?/= ±x.
,

9. (a) Single keratoid cusp at (1, -1).

*(5) Two single keratoid cusps at
|), (

- - £).

(c) A single keratoid cusp at (
— a, a). Q

10.

There is a triple point at which the tangents are parallel to the lines

y=0, y—
* *

Page 247.

1. (a) y=0. , (f3) ax— by. (y) /= ±.n
. (8) .r=0, ;//=().

6. x—a and x— 2«. 0. ±sin“Vg.

30. There is a single keratoid cusp and also a third branch having an

inflexion at the origin, the latter touching the y-axis. The shape

of the curve resembles the letter R.

31. The origin is a triple point, one branch touching the .r-axis and the

others inclined to it at angles whose tangents are ± ^/-g.

32. The form of the curve is that of the “ Staffordshire Knot.”

The nodes are situated at (g, 0), (
- a, 0), (0, - a) and the values of

djJ- are respectively ±\fty

33.

'At (0, a), tan yjs - ± ~
' .

V'l

At (a, 0), tan yfr-

At (2a, a), tan yfr = ±
' */3

3f>. At x= 2, y~ 2 we have^= ± 1/2^2.
•JtX-9
it

36.

At the origin and at (aj2, 0).

37. Two keratoid cusps atfO, ±1) ;
two nodes at (±J2, 0).

Four conjugate points at

38. Three nodes at (0, 0) and (1, ±1).

CHAPTER X.

Page 260.

1. p=a ;
p—acosy/r; p= 3asec4^*sin p= asec \fr.

2. p= 2(a

+

x)$/ab
; p=y2

/c. * 4. p— (a2sin 20 -f 52cos20)$/a&.

# Page 265.

1. p- sA/a? ;
p—a/2; p=aml(m+l)rm-\

2. p—a($2+ 1)^/0*.

• Page 284. •

*f. Infinite. 2. p= — 3a^/2/2 or 15a^5/14.

5. If y =a0, p= -a( 1 +sins0)i/cos 0 ; xja *= 1 - 2 cos 0+2 sec 0 ;

y/a= $ - tail 0 - tan 0 sin20.

2k2
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22.- The radii of curvature are respectively

«(cosh fi — cos a)*/sin a (2 cosh [3 - cos a)(cosh /?+ cos a)4.

and i7(cosh ft - cos a) S/sinh /2(cosh f3- 2 cos a)(cosli /? 4- cos a)t.

24. ^X=3+A2
.

2. 256ys 4-27.r4 =0.

3 "V>4= ^
*

.ry y* a2
’

4
“ ?r 2<r/

n.
j'(l) 4ua+ 27<t#*~ O.

I (2) //- — 4// (a+ h - .r\

CHAFFER XT.

Page 296.

6. ?/-+ 4tf(.v -2a)=0. ,

7. Two straight lines.

c

8. A parabola touching the axes.

9. A hyperbola.

Page 302.

(i)

1. .[(2)
J +y5r+ 1 = if-'-

1
.

(3) f*/=, w “ /•

'(1) +«/•' —

. (2)
"" 2m *

2i/i

(3)
4 -+

i
t/’"

+ j=
(4) *iy-K

f(i) +?,'<

.1 f >»'

• 1(2)
* 1 +//-"' +

1

-=

I (.5) 16a?/=k

gm

Pvgk 308.

1

.

4
27nry-= 4(.r — 2<y)

:!
. 6. r2 — a-votfO 4- G2sin 2

0.

3. + ?/"«= ay. 12. — a*.

16. y2(*+ 16a)2+ 4{6?/“- (2«-^)2
}{y2 -3c/r2G -.r)} =0.

37. A parabola with the given point for focus.

39. apb*ppq*=(p+g)p+9bp+ t
- 40. A conic.

CHAPTER XIV.

Page 376.

1. log»a. 5. 4. 9. L 13. l. ^7. U- 21. oo.

2- i 6. 4. 10. % 14. 1. 18. 22. 1.

3.
m

.

n
7. 2. c

ii. i 15. i

l ."»* 19. i 23. e-i

4.1.
n

8* 1. 12. i

25.

16. -V-

26. A
20. 1. 24. 0.

t
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1 . 2.

2- i-

• 3. 2.

4. i
5. -i.

a
'6. 4.

7.
4wr

8.

1

Je

9. e.

Page 384.

17. -1.

P “>"'>«•
18.0.

a

u<m
,
0.

15. e2.

16. aiajoi;} ...

19. fc, 0.

20.

21. -a.

22. j.

23. 0.

24. Jo.

25. 1.

36. 0 or ±J.

46. -j.

39.

26. *.
a- C2, -y
28. “

1V-
29. 0.

30.
2!

31. 1.

33.

34. 0 or oo

.

6
35. ±

41. e a*-'-

/or - b-

45. 1 ,
bx~ \b cos b.c — sin b c)eos25.r.

1
47. ..

J'2<f

CHAPTER XV.

Page 390.

48. 1.

9. The height is three times the semi-axis to which the base is perpen-

dicular.

12. —_ . 14. The centroid of the Jriangle.

n
/2«6

20. If a and b are the sides the maximum area - \{a + bf.

21 .

(A maximum when tlfe chords coincide with the transverse axis and

latus rectum.

|
A minimum when the chords are equally inclined to the transverse

axis.

Page 396. J

%

5. Maximum value =34, minimum- 33.

8. jl'=»-2, - 1
,

1
, 2 give maxima and .cinima alternately.

9. At x— 1 y— maximum,
^=3 y—minimum.

*

At 4f=2 and #=4 there are points of contrary flexure.

10. At #=2 y— minimum.

At x= J y=maximum.
19. Half the triangle formed by tlie chord and the tangents at its extrem- .

• ities, or three-fourths of the area of the segment.*

Page 405.

13. Its height = J of the radius.
^
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Page 413.

2. It cannot lie between ±2Jab.
4. #= — J gives a maximum, x—\ gives a minimum.

5. x—2 gives a maximum, ^=5a minimum.

6. Minimum ordinate at x= 4 point of inflexion at (-5, 0).

« v“

(

At .r=a, ^=c.

At *-£+“, y=c±6=(^
6

)

5
,
a bei

11- (a+6)s
-

20. JP ,
_2Z_

p+ q p+ q

being supposed greater than b.

22. n parts. Continued product

=

e
n

.

23.
*

p
~Up

24.
[

A maximum when the segment is a semicircle.

A minimum when the ratlins is infinite.

25. The distances of the point from the extremities of the line are

2ari 2ars

* JW2 4*r/ v/7*i“ 4- r2
3

26. The point divides the line of centres in the ratio : r23, and r*

being the radii.

27. A0:Afl=l
t

28. If A be the smallest angle and b
t
c the adjacent sides, the distance of

each end of the fence from and the length of the fence

. A
= J2bc sin

knots an hour.

fa

40. J

>b
9 maximum if .

3

I a< b, maximum if x=a.
Ice = b

9
gives a point of inflexion.

43.

(If fcos a be > e
,
Greatest-™11 “ cos “ Least= f

sin “ cos “
1 (l-ec&sa)2 (l+<?cosa)2

If cos a be < e
y
the above values are both minima, and there are two

Pcot a «

maxima each equal to
1 -c2

'

44. The tangent at P must be parallel to

45.

flf h< 2a, P is at the vertex.

{If• — h >2a, the abscissa of P is h — 2a, and the perpendicular is there*

[ fore the normal at P.

• 46. Maximum area=4r2sin a cos3a, where r is the radius of the circle And
2a thejgiven angle. ‘ •

CA
49. sin 'A®®**

(jQjtf
^keing^lie centre.
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CHAPTER XVI.

Page 429.

1.

(a) Maximum when

()3) Minima when x= ±*/2, y=* +*J%

(y) Maxima when x- and when x— —

minima when x— and when x=

•
'~IJ IJ

(8) Maximum value ^lOSa7
/?7

.

(e) A maximum when d7=y«=-.
3

(D x=y=0 gives a maximum and x=y— ±3 give minima.

(v) x—y—agives a maximum or minimum according as a is negative

or positive. •

2. Minimum value =p2
fta

2+ b2+

c

2
).

3. Maximum value ^rnmnnppam+n+pl(m+ n+p)m+n+p.

4. Maximum value =4.

5. A maximum when tan A/m— fan Bln— fan Cfp.

6. A maximum value given by
j
0 c ^

2u
| =Q

n

c, 0, ,,
2“l
n

h ^ n 2w
|

0, a
, 0, —

n

w .

I» 1 >
i

1 ^

assuming that a, 6, c are such that a triangle could be constructed

with these sides. ^
#

7. The results are the roots of the quadratic

• Pa4/(l -ahi)+m*b*l(l-v : ‘) f aV/(1 -c%)=0.

8. Volume—8dbc/3*J3.

9. { log(A«6c)}3/log a3
. log ft

3 ? log c3.
•

Id If a9 be the given volume the parallelopiped is a cube of surface 6a9.

11. The root of u, 1, 1 =0.

1, 2aa
, 2cta'

1, 2oa', Sa'2

IS* The solutions are respectively the roots of

(1) (i-Xi-Xr*) -*
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K !) =<'.

h, b-l, f

ih .f.

X
c — - -

n

cS} P
/(

a
~l)

+m
V(.

b
~l)

+H'/
(
c_

«)
=o-

(4) a-
u

K

K h-

<h l

t\ * "*•

= 0.

/, ;//, H, 0 J

13. The values of ji;
9 //, ; are given by

»• . j in »r-w
•< />~ r _J/ 1

e
f/pa wi/^6 wrc

14. </, .r,
//, 6 are to Ik* ill geometrical progression and the maximum

value is («*+/;])

15. ?^= /-2>2+ &2+c2 +...>.

17. The centroid. .

18.

e
It is such that each side subtends an angle of 120° there.

19. The face^shuuld be equally inclined to the base.

2°.
^J{

[AjA.jAj—1„) when T is the volume and Au A « ... Au the n faces.

22. They are the roots of i

c 7.2 7.

*
2
(

1

+p2+ q
l
) ~~{(1 + </“)'* - 4- (

1

+p2
)*}

+

r/ - *2=0.

CHAPTER XVII.

Page ^436.

3. ^tan 0-^.

4. y8= 0. «

Page 437.

2. (l+a%i=ay.

Page 444.

1 . 2<cyi=y.

2. Ayf+yy^yy*

1. ^i=o^+2y.

C

1. ya+nfy=p.

2. y2 -2nyi +71^*0.

3. dya+2yi-^y*0.

5. ya -w2y=0.

6. y8+^=0.
f

3. a?yt+xyi+y=><i.

4. ya -2y,+ 2y=0.

5. }h-fyi + 13y=0.

ft. y2 -2m.y1+(m,+ «3)y=0.
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7. 0fa+yi*-yiXyi
2 -l)=3yjyjs

. 12. y <+ ify= 2?i cos w.r.

8. U^y- 3'!/i)+ = (>.

9. ^s+ay,+y=a

10. ys+yi l'+l=0.

11. ^2 4- = cos mx.

19. p—yUg2-#1
)^.

13. 3/3+/jyg 4- 7/1 + •'*> — 0.

10. y3 -y2-yi4-y=-0.

17. y4 + 2tt
2
y2 -Mi

4y==0.

18. (a

+

bx)ly2+ b(a -f 6.r)yj+ nl
y= 0.

37. (x2r -yH)z+(z-px - gyXP*’ ~ Tj)- °-

13.

CHAPTER XVIII.

Page 45.5.

>.31

f
* v+j-»

2\l+.rV 2.4\l+.r-7 2. I . (A I +.<"7

which is true between 1 and - 1 . ff x > 1 the series stands for
1

16. *“=] +n(zJx)+u((i- ilbi
se^' ’

+ ....

1. ^f + «2,y=*0.

< s+,:«.

CHAPTER XIX.

Pack 468.

„ «.+ 4K£)"-C5(£r

6. g+,-a

’>'(3)*
1-^-

8. tan </>=-

*4-y
dr

27. ^+3=0.
</v2

... 3*r, 2-T

dei+d^
35. ^1^2 4" b^b2" 0.

l
7)<i

1
+ ’

5T)~

wuntm> at thi university mass bv rorert juaclehose, Glasgow.

* •
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